Настоящее изобретение относится к применению 1,1-диэтоксиэтана (ацетальдегид-диэтилацетата) в качестве антидетонационной присадки для карбюраторного топлива (автомобильного бензина). Объект изобретения также включает автомобильный бензин, получаемый путем добавления антидетонационной присадки согласно настоящему изобретению. В данной заявке вместо термина «карбюраторное топливо» далее используется более правильный термин «автомобильное топливо».
Существуют различные виды автомобильного топлива, например Супер и Суперплюс (Super и Superplus), с разной детонационной стойкостью. Детонационная стойкость бензина, используемого в двигателях внутреннего сгорания, определяет способность бензина не подвергаться неконтролируемому сгоранию («детонации») в результате самовоспламенения, при этом контролируемое сгорание происходит только от искр зажигания, при впрыске или сжатии. Для повышения детонационной стойкости автомобильного бензина его смешивают с добавками (т.н. антидетонационными присадками), которые снижают склонность бензина к детонации в двигателе внутреннего сгорания путем увеличения его октанового числа.
Это означает, что октановое число определяет степень детонационной стойкости автомобильного бензина. Октановое число ниже 100 равно содержанию в процентах по объему изооктана C8H18 (ОЧИ = 100, где ОЧИ - исследовательское октановое число) в смеси с н-гептаном С7Н16 (ОЧИ = 0), при котором указанная смесь имеет ту же детонационную стойкость (в опытном двигателе согласно ОЧИ или ОЧМ, где ОЧМ - моторное октановое число), что и исследуемое топливо. Например, октановое число ОЧИ = 95 бензина означает, что детонационная стойкость этого бензина эквивалентна стойкости смеси, на 95% по объему состоящей из изооктана и на 5% - из н-гептана.
Исследовательское октановое число (ОЧИ) определяется согласно стандарту DIN EN ISO 5164 (ASTM D 2699) и показывает склонность бензина к детонации в режиме малой нагрузки и с низкой скоростью вращения. Моторное октановое число (ОЧМ) определяется согласно стандарту DIN EN ISO 5163 (ASTM D 2700) и показывает склонность бензина к детонации в режиме большой нагрузки и при высоком термическом напряжении.
В прошлом в качестве антидетонационных присадок использовались органические соединения свинца, в частности алкилы свинца, например тетраэтилсвинец. В настоящее время используются кислородсодержащие соединения (оксигенаты), например спирты или эфиры, так как свинец вызывает повреждения каталитического конвертера автомобиля, а также является высокотоксичным и очень вредным для окружающей среды. Поскольку смеси бензина и спирта склонны к расслаиванию в присутствии воды и (или) при низких температурах, в качестве антидетонационной присадки сейчас, в основном, применяется метил-трет-бутиловый эфир (МБТЭ). Однако МБТЭ загрязняет окружающую среду и плохо поддается биоразложению (период полуразложения в подземных водах равен 10-15 годам). Помимо МБТЭ в России также используется такой антидетонатор как N-метиланилин (монометиланилин, ММА), антидетонационный эффект которого выше, чем у МБТЭ или метанола, однако при его использовании образуются канцерогены - N-нитрозамины.
В патентной литературе также предлагается несколько соединений для увеличения детонационной стойкости карбюраторного топлива.
Например, в патенте US 6,514,299 описана антидетонационная присадка, в которой от 85% до 99% по объему занимает спирт С1-С4 и от 1% до 15% по объему занимает соединение эфира, например диалкоксиалкан, алкоксиалканол, триалкоксиалкан, диалкоксициклоалкан или арилалкилдиэфир. Вышеуказанное соединение получают путем нагрева спирта С1-С4 в присутствии нейтрального или основного катализатора на базе платины. Соединение демонстрирует синергическое увеличение октанового числа.
В патенте DE 3133899 А1 предлагается добавлять кетали с общей формулой R3O-C(R1)(R2)-OR4, где R1 - это СН3, С2Н5 или С3Н7, R2 обозначает СН3 или С2Н5, а в качестве R3 и R4 могут присутствовать СН3, С2Н5, С3Н7 или С4Н9. По возможности, вышеуказанные диалкоксиалканы добавляют в сочетании с диалкоксиметанами. В предпочтительном варианте осуществления изобретения используют 2,2-диалкоксипропаны (в частности, 2,2-диметоксипропан), по возможности, в сочетании с диметоксиметаном. Результаты этой заявки демонстрируют, что указанные добавки позволяют увеличить исследовательское октановое число и моторное октановое число максимум на 2,5 единицы.
Перед настоящим изобретением ставится задача создания альтернативной антидетонационной присадки для автомобильного бензина, которая позволяла бы достичь существенного увеличения исследовательского октанового числа, а также моторного октанового числа.
Было обнаружено поразительное явление, что одно лишь добавление 1,1-диэтоксиэтана в низкокипящий бензин с температурой начала кипения (НК) от 80°С до 120°С приводит к существенному увеличению детонационной стойкости (исследовательского октанового числа ОЧИ) на величину не менее 40 единиц. ОЧМ возрастает на величину от 25 до более 40 единиц, в предпочтительном варианте осуществления на величину от 30 до 40 единиц. 1,1-диэтоксиэтан добавляют в количестве от 5% до 20% по объему, в предпочтительном варианте осуществления - от 5% до 10% по объему. Низкокипящий бензин с НК от 80°С до 120°С используется в качестве базового бензина и имеет ОЧИ и ОЧМ не менее 70 единиц каждое, в предпочтительном варианте осуществления - 75 единиц каждое. Автомобильный бензин согласно настоящему изобретению получают путем добавления 1,1-диэтоксиэтана и стандартных добавок, таких как противоокислители, антикоррозийные присадки, моющие добавки (для защиты системы впрыска от образования отложений), противообледенительные присадки для защиты карбюратора, ускорители воспламенения и т.д., или их смеси. Применяемый базовый бензин имеет предпочтительную температуру начала кипения от 80°С до 115°С, в более предпочтительном варианте от 85°С до 110°С, в особенно предпочтительном варианте - от 90°С до 110°С. Согласно изобретению предпочтительно добавлять 1,1-диэтоксиэтан в количестве от 5% до 10% по объему, в особенно предпочтительном варианте - в количестве ок. 5% по объему.
Объект изобретения также включает автомобильный бензин с исследовательским октановым числом от ПО до 140 единиц, включающий низкокипящий бензин с температурой начала кипения от 80°С до 120°С в качестве базового бензина, 1,1-диэтоксиэтан в качестве единственной антидетонационной присадки и стандартные добавки. Предпочтительно, чтобы автомобильный бензин в настоящем изобретении имел моторное октановое число от 95 до 140 единиц, в особенно предпочтительном варианте от 100 до 140 единиц.
Автомобильный бензин в настоящем изобретении включает 1,1-диэтоксиэтан и стандартные добавки, но не содержит других антидетонационных присадок, в частности не содержит спиртов С1-С4, которые в сочетании с особыми 1,1-диалкоксиалканами описаны в качестве антидетонационных присадок в патенте US 6,514,299. Также автомобильный бензин не содержит кеталей с общей формулой R3O-C(R1)(R2)-OR4, которые в сочетании с диметоксиметаном описаны в качестве антидетонационной присадки в патенте DE 3133899 А1.
Также было обнаружено, что добавляемый в бензин 1,1-диэтоксиэтан предотвращает нагарообразование, а также действует как очиститель, устраняя отложения и нагар в цилиндре двигателя и обеспечивая чистоту инжекторного насоса.
При добавлении 1,1-диэтоксиэтана в товарный бензин (содержащий 15, 10 или 20% этанола) полученный бензин сохраняет стабильность, и в течение 1-1,5 лет не происходит расслаивания. Это относится и к предлагаемому автомобильному бензину.
Далее настоящее изобретение подробно описано со ссылками на примеры вариантов его осуществления без указания на чертежи.
Варианты осуществления изобретения
1,1-диэтоксиэтан был синтезирован в соответствии с известными способами; его точку кипения определили равной 103°С, а коэффициент преломления - равным 1,3819 (nd 20).
Приведенные в таблице 1 составляющие добавляли к низкокипящему бензину с температурой НК 110°С в количестве по объему, указанном в таблице, чтобы сравнить их с 1,1-диэтоксиэтаном. Диэтоксиэтан добавляли к низкокипящим фракциям бензина с НК 100°С и НК 110°С. ОЧИ измеряли согласно стандарту ASTM D 2699-86 при помощи анализатора Shatox SX-300 или Shatox SX-150 NEW, по возможности экстраполировали полученные значения. ОЧМ определяли аналогичным образом, в соответствии со стандартом ASTM D 2700-86.
Полученные значения убедительно показывают, что добавление 1,1-диэтоксиэтана в количестве 5%-10% по объему к низкокипящему базовому бензину позволяет добиться увеличения ОЧМ на величину от 29 до более 40 единиц и увеличения ОЧИ на более чем 40 единиц.
название | год | авторы | номер документа |
---|---|---|---|
АНТИДЕТОНАЦИОННАЯ ДОБАВКА "ОКТА 2" И ТОПЛИВО С УКАЗАННОЙ ДОБАВКОЙ | 2015 |
|
RU2586688C1 |
Кислородсодержащее композиционное дизельное топливо с регулируемыми низкотемпературными свойствами | 2023 |
|
RU2811842C1 |
АНТИДЕТОНАЦИОННАЯ ДОБАВКА К БЕНЗИНУ | 2005 |
|
RU2305125C9 |
6-ЭТОКСИ-1,2,2,4-ТЕТРАМЕТИЛ-1,2-ДИГИДРОХИНОЛИН В КАЧЕСТВЕ КОМПОНЕНТА, ПОВЫШАЮЩЕГО СТОЙКОСТЬ УГЛЕВОДОРОДНЫХ ТОПЛИВ К ДЕТОНАЦИИ | 2005 |
|
RU2324681C9 |
АНТИДЕТОНАЦИОННАЯ ДОБАВКА И ТОПЛИВО С УКАЗАННОЙ ДОБАВКОЙ | 2015 |
|
RU2576327C1 |
МНОГОФУНКЦИОНАЛЬНАЯ ДОБАВКА К АВТОМОБИЛЬНОМУ БЕНЗИНУ И ТОПЛИВНАЯ ОСНОВА ЕЕ СОДЕРЖАЩАЯ | 2016 |
|
RU2633357C1 |
АНТИДЕТОНАЦИОННАЯ ДОБАВКА К БЕНЗИНУ НА ОСНОВЕ АЛКОКСИЗАМЕЩЕННЫХ АНИЛИНОВ И ТОПЛИВНЫЕ КОМПОЗИЦИИ, ЕЕ СОДЕРЖАЩИЕ | 2005 |
|
RU2305128C9 |
Топливная композиция авиационного неэтилированного бензина | 2022 |
|
RU2786223C1 |
ПРОИЗВОДНЫЕ ОРТОЭТОКСИАНИЛИНОВ, ПОВЫШАЮЩИЕ СТОЙКОСТЬ УГЛЕВОДОРОДНЫХ ТОПЛИВ К ДЕТОНАЦИИ, И ТОПЛИВНЫЕ КОМПОЗИЦИИ | 2006 |
|
RU2314286C1 |
СПОСОБ ОЦЕНКИ ДЕТОНАЦИОННОЙ СТОЙКОСТИ АВТОМОБИЛЬНЫХ БЕНЗИНОВ | 2007 |
|
RU2339037C1 |
Настоящее изобретение относится к применению 1,1-диэтоксиэтана в качестве антидетонационной присадки для увеличения детонационной стойкости низкокипящего бензина с температурой начала кипения от 80°С до 120°С, исследовательское и моторное октановые числа которого составляют не менее 70 единиц. Причем 1,1-диэтоксиэтан составляет от 5% до 20% по объему относительно общего объема низкокипящего бензина и является единственной антидетонационной присадкой, при этом исследовательское октановое число бензина увеличивается не менее чем на 40 единиц. Также изобретение относится к автомобильному бензину с исследовательским октановым числом от 110 до 140 единиц, включающему низкокипящий бензин с температурой начала кипения от 80°С до 120°С в качестве базового бензина, 1,1-диэтоксиэтан от 5% до 20% по объему относительно общего объема низкокипящего бензина в качестве единственной антидетонационной присадки, а также стандартные добавки. 2 н. и 5 з.п. ф-лы, 1 табл., 1 пр.
1. Применение 1,1-диэтоксиэтана в качестве антидетонационной присадки для увеличения детонационной стойкости низкокипящего бензина с температурой начала кипения от 80°С до 120°С, исследовательское и моторное октановые числа которого составляют не менее 70 единиц, 1,1-диэтоксиэтан составляет от 5% до 20% по объему относительно общего объема низкокипящего бензина и является единственной антидетонационной присадкой, при этом исследовательское октановое число бензина увеличивается не менее чем на 40 единиц.
2. Применение 1,1-диэтоксиэтана по п. 1, отличающееся тем, что моторное октановое число увеличивается на величину от 25 до 40 единиц, предпочтительно на величину от 30 до 40 единиц.
3. Применение 1,1-диэтоксиэтана по п. 1 или 2, для увеличения детонационной стойкости низкокипящего бензина с температурой начала кипения от 80°С до 115°С, предпочтительно от 85°С до 110°С.
4. Применение 1,1-диэтоксиэтана по п. 1 или 2, в количестве около 5% по объему.
5. Применение 1,1-диэтоксиэтана по п. 3, в количестве около 5% по объему.
6. Автомобильный бензин с исследовательским октановым числом от 110 до 140 единиц, включающий низкокипящий бензин с температурой начала кипения от 80°С до 120°С в качестве базового бензина, 1,1-диэтоксиэтан от 5% до 20% по объему относительно общего объема низкокипящего бензина в качестве единственной антидетонационной присадки, а также стандартные добавки.
7. Автомобильный бензин по п. 6, моторное октановое число которого составляет от 95 до 140 единиц, предпочтительно от 100 до 140 единиц.
US 1582420A1, 27.04.1926 US 3869262A1, 04.03.1975 WO 2010011156A1, 28.01.2010 И.Ш | |||
Хуснутдинов и др | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Химия и химическая технология, 2009, том 52, вып.11, 119-122 |
Авторы
Даты
2015-11-10—Публикация
2012-04-19—Подача