СПОСОБ УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ, СНАБЖЕННЫМ ДВИГАТЕЛЬНОЙ УСТАНОВКОЙ С РЕАКТИВНЫМИ СОПЛАМИ Российский патент 2015 года по МПК B64C15/00 

Описание патента на изобретение RU2570743C2

Изобретение относится к управлению летательным аппаратом (ЛА) в полете с использованием реактивной силы струи двигательной установки.

Известны способы управления движением ЛА воздействием на струю газов реактивного сопла двигательной установки (И.Х. Фахрутдинов, А.В. Котельников, "Конструкция и проектирование ракетных двигателей твердого топлива", Москва, изд. "Машиностроение, 1987 г., стр. 215-253). Наиболее простой способ управления летательным аппаратом, снабженным двигательной установкой с реактивным соплом, принятый за прототип, представлен на стр. 236-239, рис. 9.30а и 9.316 и заключается в периодическом введении интерцепторов реверсным приводом в различные участки по периферии газовой струи за срезом реактивного сопла, в зависимости от необходимого направления движения летательного аппарата. Интерцептор вводится в газовую струю периодически, на время создания управляющего усилия. Для управления ЛА по трем каналам (тангаж, рыскание и крен) используют восемь интерцепторов, расположенных вне реактивного сопла по его периферии. Четыре интерцептора, расположенные попарно противоположно, обеспечивают управление ЛА по курсу и тангажу, а остальные четыре, также расположенные попарно противоположно, используются для управления по крену, при этом плоскости их поверхностей, направленные навстречу потоку газов в струе, скошены под углом к оси, с попарно противоположным направлением угла скоса. Для создания управляющего момента по крену достаточен небольшой угол скоса (1-2°). Известный способ может быть реализован и при наличии в двигательной установке нескольких реактивных сопел, их размещении снаружи вдоль корпуса летательного аппарата, с введением интерцепторов в газовую струю соответствующего реактивного сопла.

Существенными признаками прототипа, совпадающими с предлагаемым способом, являются следующие: способ управления летательным аппаратом, снабженным двигательной установкой с реактивными соплами, заключающийся в размещении реактивных сопел снаружи вдоль корпуса летательного аппарата и периодическом введении интерцепторов реверсным приводом в газовую струю соответствующего реактивного сопла, в зависимости от необходимого направления движения летательного аппарата.

В прототипе для управления движением ЛА используется восемь интерцепторов и восемь приводов для их вращения, что усложняет систему управления. Кроме того, для создания управляющего момента по крену площадь поверхности четырех интерцепторов используется с эффективностью 1,7-3,5% (пропорционально тангенсу угла скоса их поверхности), что увеличивает затраты энергии двигательной установки на управление по крену ЛА.

Техническим результатом, на решение которого направлено изобретение, является уменьшение количества интерцепторов и их приводов и увеличение эффективности управления интерцепторами по крену ЛА.

Для решения поставленной задачи в способе управления летательным аппаратом, снабженным двигательной установкой с реактивными соплами, заключающемся в размещении реактивных сопел снаружи вдоль корпуса летательного аппарата и периодическом введении интерцепторов реверсным приводом в газовую струю соответствующего реактивного сопла, в зависимости от необходимого направления движения летательного аппарата, реактивные сопла группируют попарно с близким расположением реактивных сопел в паре, в количестве не менее трех пар, и для управления летательным аппаратом используют, по меньшей мере, три интерцептора, по одному в каждой паре, расположенному между реактивными соплами пары, и реверсным приводом обеспечивают периодический ввод каждого интерцептора в любую газовую струю соответствующей пары реактивных сопел, необходимую для управления.

Отличительными признаками способа управления летательным аппаратом, снабженным двигательной установкой с реактивными соплами, являются следующие - реактивные сопла группируют попарно с близким расположением реактивных сопел в паре, в количестве не менее трех пар, и для управления летательным аппаратом используют, по меньшей мере, три интерцептора, по одному в каждой паре, расположенному между реактивными соплами пары, и реверсным приводом обеспечивают периодический ввод каждого интерцептора в любую газовую струю соответствующей пары реактивных сопел, необходимую для управления.

Благодаря наличию указанных отличительных признаков в совокупности с известными достигается следующий технический результат: для управления движением ЛА достаточно трех интерцепторов и трех реверсных приводов, при этом уменьшаются затраты энергии на управление по крену.

Предложенное техническое решение может найти применение в космической и авиационной технике при полетах с большой скоростью, когда управление движением ЛА посредством отклонения аэродинамических поверхностей в обтекающем потоке воздуха невозможно или малоэффективно.

Сущность предлагаемого решения поясняется чертежами.

На фиг. 1 представлено расположение трех пар реактивных сопел на корпусе ЛА.

На фиг. 2 и 3 представлено положение интерцепторов при управлении движением ЛА по каналу рыскания в левую и правую сторону, соответственно.

На фиг. 4 и 5 представлено положение интерцепторов при управлении движением ЛА по каналу тангажа на кабрирование (набор высоты) и на пикирование (уменьшение высоты полета), соответственно.

На фиг. 6 и 7 представлено положение интерцепторов при управлении движением ЛА по каналу крена, по часовой стрелке и против часовой стрелки, соответственно.

Представленное на чертежах устройство содержит три пары реактивных сопел, соответственно, 1 и 2, 3 и 4, 5 и 6, которые закреплены снаружи вдоль корпуса 7 ЛА, с близким расположением сопел в каждой паре. Вдоль корпуса 7 между реактивными соплами в каждой паре 1 и 2, 3 и 4, 5 и 6 закреплена поворотная ось, соответственно, 8-10, соединенная с реверсным приводом, соответственно, 11-13 и снабженная интерцептором, соответственно, 14-16, выступающим за срез реактивных сопел пары, соответственно 1 и 2, 3 и 4, 5 и 6. Реверсные приводы 11-13 выполнены с возможностью введения интерцептора, соответственно, 14-16 в любую газовую струю реактивного сопла пары, соответственно, 1 и 2, 3 и 4, 5 и 6. Корпус 7 содержит систему 17 управления, сообщенную с приводами 11-13.

Способ реализуется следующим образом.

Для изменения движения ЛА по каналу рыскания, налево от направления движения корпуса 7 (фиг. 2, левый поворот), система 17 (фиг. 1) управления задействует реверсный привод 11 для вращения оси 8 по часовой стрелке, а реверсные приводы 12 и 13 для вращения осей 9 и 10 против часовой стрелки. При этом установленный на оси 8 интерцептор 14 вводится в газовую струю за срезом реактивного сопла 2 (фиг. 2), а интерцепторы 15 и 16, установленные на осях 9 и 10, вводятся в газовые струи за срезом реактивных сопел 3 и 5, соответственно. На участках стенок реактивных сопел 2, 3 и 5 перед поверхностями стенок интерцепторов, соответственно 14, 15 и 16, образуются зоны повышенного давления, за счет торможения газового потока, формируя силу F14, действующую на стенку реактивного сопла 2 и через его крепление (на чертежах не показано) на заднюю часть корпуса 7 направо от направления его движения, и момент силы F14 относительно продольной оси корпуса 7, направленный на вращение корпуса 7 по часовой стрелке. Аналогично формируются сила F15, действующая на стенку реактивного сопла 3, и сила F16, действующая на стенку реактивного сопла 5. При этом приводы 12 и 13 поворачивают оси 9 и 10 на меньший угол, по сравнению с углом поворота оси 8 приводом 11, таким образом, чтобы сумма сил F15 и F16 равнялась силе F14. В результате силы F15 и F16 создают момент вращения корпуса 7 против часовой стрелки, компенсирующий момент вращения корпуса 7 силой F14, и, под действием силы F14 и проекций сил F15 и F16 на горизонтальную ось, корпус 7 поворачивается относительно оси, перпендикулярной его продольной оси и проходящей через центр тяжести (ЛА) с направлением носовой части корпуса 7 налево от направления движения, при этом корпус 7 ЛА совершает маневр по каналу рыскания в левую сторону без вращения вокруг своей оси. Изменение движения ЛА по каналу рыскания, направо от направления движения корпуса 7, фиг. 3, осуществляется аналогично. Отличие заключается в том, что система 17 управления задействует привод 11 для вращения оси 8 против часовой стрелки и интерцептор 14 погружается в газовую струю реактивного сопла 1, а приводы 12 и 13 задействуются для вращения осей, соответственно 9 и 10, по часовой стрелке, обеспечивая погружение интерцепторов 15 и 16 в газовые струи реактивных сопел, соответственно 4 и 6. При этом соотношение сил F14, F15 и F16 сохраняется, а их направление меняется на противоположное, обеспечивая маневр корпуса 7 ЛА по каналу рыскания, направо от направления его движения и без вращения вокруг его продольной оси. Для изменения движения ЛА по каналу тангажа, вверх от направления движения корпуса 7 (набор высоты) приводы 12 и 13 (фиг. 1) поворачивают оси, соответственно, 9 (фиг. 4) против часовой стрелки, а 10 по часовой стрелке на одинаковый угол, обеспечивая погружение интерцепторов 15 и 16 в газовые струи реактивных сопел, соответственно, 3 и 6, с формированием сил F15 и F16, направленных вниз, с наклоном к вертикальной плоскости симметрии корпуса 7. Силы F15 и F16 раскладываются на боковые составляющие F15-1 и F16-1, уравновешивающие друг друга, и вертикальные составляющие F15-2 и F16-2, которые поворачивают корпус 7 в вертикальной плоскости вокруг горизонтальной оси, проходящей через центр тяжести ЛА, с увеличением тангажа (угла наклона продольной оси корпуса 7 к горизонту). Уменьшение угла тангажа осуществляется аналогично. Отличие заключается в том, что система 17 управления ЛА задействует приводы 12 и 13 для вращения осей, соответственно, 9 по часовой стрелке и 10 против часовой стрелки, при этом интерцепторы 15 и 16 погружаются в газовые струи реактивных сопел, соответственно, 4 и 5 (фиг. 5), силы F15 и F16 меняют свое направление на противоположное, а их вертикальные составляющие F15-2 и F16-2 обеспечивают поворот корпуса 7 в вертикальной плоскости относительно горизонтальной оси, проходящей через центр тяжести корпуса 7, с уменьшением угла тангажа. Для случая крепления реактивных сопел 1-6 и поворотных осей 8-10 в передней части корпуса (на чертежах не показано) управление по рысканию и тангажу осуществляется аналогично, при этом направление вращения осей 9-10 приводами 11-13 меняется на противоположное описанному выше. Для управления по каналу крена, с поворотом корпуса 7 вокруг продольной оси по часовой стрелке, система 17 (фиг. 1) управления задействует приводы 11-13, для поворота осей, соответственно, 8-10 по (фиг. 6) часовой стрелке на одинаковый угол, при этом интерцепторы 14-16 погружаются в газовые струи реактивных сопел, соответственно, 2, 4 и 6, с формированием сил, соответственно, F14-F16, их равнодействующая сила (векторная сумма) равна нулю, а действующий на корпус 7 момент вращения, относительно его продольной оси равный сумме произведений величины каждой силы на кратчайшее расстояние от линии ее действия до продольной оси корпуса 7, поворачивает корпус 7 вокруг его продольной оси по часовой стрелке. Управление по каналу крена с поворотом корпуса 7 вокруг продольной оси против часовой стрелки осуществляется аналогично. Отличие заключается в том, что система 17 (фиг. 1) управления ЛА задействует приводы 11-13 для поворота осей, соответственно, 8-10 (фиг. 7) против часовой стрелки на одинаковый угол, при этом интерцепторы 14-16 погружаются в газовые струи реактивных сопел, соответственно, 1, 3 и 5, с формированием сил F14-F16, направленных в противоположную сторону, и действующий на корпус 7 момент сил поворачивает его вокруг продольной оси против часовой стрелки. Возможны также и более сложные варианты управления движением ЛА, представляющие собой комбинацию описанных вариантов, например поворот корпуса 7 по каналу рыскания с поворотом по каналу крена, с набором высоты или снижением, при этом система 17 управления ЛА варьирует углами поворота интерцепторов 14-16 и периодом (импульсом) их введения в газовые струи реактивных сопел 1-6, обеспечивая необходимое движение ЛА. Пары реактивных сопел 1 и 2, 3 и 4, 5 и 6 могут располагаться на корпусе 7 как на одинаковом расстоянии друг от друга, так и на различных расстояниях. Отличие заключается в том, что при одинаковом расположении пар реактивных сопел 1 и 2, 3 и 4, 5 и 6 с одинаковым расстоянием друг от друга система 17 управления ЛА использует более простые алгоритмические зависимости управления интерцепторами 14-16, а при различных расстояниях между парами реактивных сопел 1 и 2, 3 и 4, 5 и 6 система 17 управления, с учетом различия во влиянии на движение ЛА различных интерцепторов 14-16, в зависимости их расположения, должна обеспечивать управление интерцепторами 14-16 по более сложным алгоритмическим зависимостям.

Похожие патенты RU2570743C2

название год авторы номер документа
ЛЕТАТЕЛЬНЫЙ АППАРАТ 2014
  • Ерахтин Михаил Михайлович
  • Мищенко Анатолий Петрович
  • Семененко Юрий Николаевич
  • Чернов Леонид Александрович
RU2555085C1
СПОСОБ УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ, СНАБЖЕННЫМ ДВИГАТЕЛЬНОЙ УСТАНОВКОЙ С РЕАКТИВНЫМИ СОПЛАМИ 2014
  • Ерахтин Михаил Михайлович
  • Мищенко Анатолий Петрович
  • Семененко Юрий Николаевич
  • Чернов Леонид Александрович
RU2570745C2
УСТРОЙСТВО И СПОСОБ УПРАВЛЕНИЯ ПОСАДКОЙ КОСМИЧЕСКОГО АППАРАТА 1994
  • Бурдаков В.П.
  • Канаев А.И.
RU2097286C1
УСТРОЙСТВО УПРАВЛЕНИЯ ВЕКТОРОМ ТЯГИ РЕАКТИВНОГО ДВИГАТЕЛЯ 2012
  • Алексенко Михаил Никитович
RU2527798C2
МАНЕВРИРУЮЩАЯ СТУПЕНЬ РАКЕТЫ С КОМБИНИРОВАННОЙ ДВИГАТЕЛЬНОЙ УСТАНОВКОЙ И СПОСОБ УПРАВЛЕНИЯ ЕЕ ДВИЖЕНИЕМ 2010
  • Алиев Али Вейсович
  • Лошкарев Анатолий Николаевич
  • Сермягин Константин Викторович
  • Миронов Андрей Николаевич
RU2427507C1
Летательный аппарат короткого взлета и посадки с газодинамическим управлением 2018
  • Сычев Владимир Борисович
  • Амброжевич Александр Владимирович
  • Пшиченко Дмитрий Викторович
  • Карташев Андрей Сергеевич
  • Корнев Алексей Владимирович
  • Караваев Николай Андреевич
  • Сычев Сергей Владимирович
  • Куликов Борис Михайлович
  • Грищенко Александр Владимирович
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Середа Владислав Александрович
RU2711760C2
СОПЛО 2022
  • Новиков Игорь Евгеньевич
RU2791932C1
ДИСКОЛЁТ КРИШТОПА (ДЛК), ГИБРИДНАЯ СИЛОВАЯ УСТАНОВКА (ГСУ) ДЛЯ ДЛК И СПОСОБ ФУНКЦИОНИРОВАНИЯ ДЛК С ГСУ (ВАРИАНТЫ) 2019
  • Криштоп Анатолий Михайлович
RU2714553C1
Способ работы двигателя космического летательного аппарата 2021
  • Саттаров Альберт Габдулбарович
  • Сочнев Александр Владимирович
  • Зиганшин Булат Рустемович
RU2757615C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ 2018
  • Кровяков Владимир Борисович
  • Короленко Виктор Владимирович
  • Трофимчук Максим Васильевич
  • Андреев Максим Владимирович
  • Кожевников Илья Александрович
RU2706760C1

Иллюстрации к изобретению RU 2 570 743 C2

Реферат патента 2015 года СПОСОБ УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМ АППАРАТОМ, СНАБЖЕННЫМ ДВИГАТЕЛЬНОЙ УСТАНОВКОЙ С РЕАКТИВНЫМИ СОПЛАМИ

Изобретение относится к управлению летательным аппаратом (ЛА), снабженным двигательной установкой с реактивными соплами. Способ заключается в размещении реактивных сопел снаружи вдоль корпуса летательного аппарата и периодическом введении интерцепторов реверсным приводом в газовую струю соответствующего реактивного сопла. Сопла группируют попарно с близким расположением в паре, в количестве не менее трех пар. Для управления летательным аппаратом используют, по меньшей мере, три интерцептора, по одному в каждой паре, расположенных между реактивными соплами пары. Реверсным приводом обеспечивают периодический ввод каждого интерцептора в любую газовую струю соответствующей пары реактивных сопел, необходимую для управления. Техническим результатом изобретения является увеличение эффективности управления интерцепторами по крену ЛА. 7 ил.

Формула изобретения RU 2 570 743 C2

Способ управления летательным аппаратом, снабженным двигательной установкой с реактивными соплами, заключающийся в размещении реактивных сопел снаружи вдоль корпуса летательного аппарата и периодическом введении интерцепторов реверсным приводом в газовую струю соответствующего реактивного сопла, в зависимости от необходимого направления движения летательного аппарата, отличающийся тем, что реактивные сопла группируют попарно с близким расположением реактивных сопел в паре, в количестве не менее трех пар, и для управления летательным аппаратом используют, по меньшей мере, три интерцептора, по одному в каждой паре, расположенному между реактивными соплами пары, и реверсным приводом обеспечивают периодический ввод каждого интерцептора в любую газовую струю соответствующей пары реактивных сопел, необходимую для управления.

Документы, цитированные в отчете о поиске Патент 2015 года RU2570743C2

Фахрутдинов И.Х., Котельников А.В., "Конструкция и проектирование ракетных двигателей твердого топлива, Москва, изд
"Машиностроение", 1987 г., стр
Стеклографический печатный станок с ножной педалью 1922
  • Левенц М.А.
SU236A1
УСТРОЙСТВО И СПОСОБ УПРАВЛЕНИЯ ПОСАДКОЙ КОСМИЧЕСКОГО АППАРАТА 1994
  • Бурдаков В.П.
  • Канаев А.И.
RU2097286C1
US 4183478 A, 15.01.1980.

RU 2 570 743 C2

Авторы

Ерахтин Михаил Михайлович

Мищенко Анатолий Петрович

Семененко Юрий Николаевич

Чернов Леонид Александрович

Даты

2015-12-10Публикация

2014-04-17Подача