Изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, в частности для экспресс-контроля качества авиационных керосинов.
Известен кондуктометрический способ определения влажности (см. Жуков Ю.П., Кулаков М.В. Высокочастотная безэлектродная кондуктометрия. - М.: Энергия, 1968. С. 104), который в диапазоне объемных влажностей 0-2% обладает низкой чувствительностью, так как величины сопротивлений материалов становятся больше входных сопротивлений измерительных устройств.
Известен резонаторный способ определения влажности (см. Берлинер М.А. Измерение влажности. - М.: Энергия, 1973). Исследуемая жидкость помещается в кювету, находящуюся в полости цилиндрического объемного резонатора (ЦОР). Кювета выполняется в виде цилиндра или диска и устанавливается вдоль или перпендикулярно продольной оси объемного резонатора. Возбуждается колебание электромагнитного поля (ЭМП) типа H011. Выходной величиной первичного измерительного преобразователя (ПИП) служит изменение добротности резонатора ΔQ=Q0-Q (Q - нагруженная, Q0 - ненагруженная добротности резонатора), вызванное введением исследуемого материала с неизвестной влажностью. Недостатком указанного способа является невысокая точность определения содержания влаги в виде осадка за счет дополнительного влияния растворимой влаги, содержащейся в исследуемом углеводороде, и которая зависит от температуры, давления и от типа углеводорода.
За прототип принят способ определения СВЧ-способ определения осажденной влаги в жидких углеводородах (Патент РФ №2451929, МКл6 G01N 22/04. СВЧ-способ определения осажденной влаги в жидких углеводородах/ Суслин М.А., Шаталов А.Л. (РФ) - №2010147251/09; заявл. 18.11.10., опубл. 27.05.12 г. Бюл №15). В данном способе исследуемый жидкий углеводород помещают в полость цилиндрического объемного резонатора (ЦОР) с продольной осью, перпендикулярной горизонту, возбуждают электромагнитное поле типа H011, измеряют изменение добротности цилиндрического объемного резонатора с колебанием H011, которое вызвано введением исследуемого материала, возбуждают далее электромагнитное поле типа E010, измеряют изменение добротности цилиндрического объемного резонатора с колебанием E010, которое вызвано введением исследуемого материала, при этом цилиндрический объемный резонатор в начале полностью заполняют исследуемой жидкостью, после некоторого времени отстоя - порядка десяти секунд - сливают жидкость так, чтобы отстой влаги оставался на нижней торцевой стенке резонатора. По изменению добротности цилиндрического объемного резонатора с колебанием E010 судят об объемной концентрации осажденной влаги в диапазоне до 0,4%, а по изменению добротности цилиндрического объемного резонатора с колебанием H011 - в диапазоне 0,4-2%.
Недостатком прототипа является недостаточная чувствительность определения осажденной влаги в виде капель.
Техническим результатом предлагаемого изобретения является повышение чувствительности определения объемной концентрации осажденной влаги в жидких углеводородах.
Данный технический результат достигается тем, что в известном способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа H011, измерении изменения добротности, вызванное наличием осажденной влаги, дополнительно исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания.
На фиг. 1 представлена измерительная схема резонатора с каплями на твердой поверхности, на фиг. 2 - интерфейс программы COMSOL Multiphysics с результатом моделирования (изометрия), на фиг. 3 - силовые линии электрического поля колебания Н011, возмущенного каплей воды, на фиг. 4 - структурная схема резонатора с тонким слоем влаги на твердой поверхности, на фиг. 5 - внешний вид экспериментальной установки для измерения нагруженной добротности, на фиг. 6 - результаты экспериментальных исследований для резонатора с каплями на твердой поверхности, на фиг. 7 - результаты экспериментальных исследований для резонатора с тонким слоем влаги на твердой поверхности.
Повышение чувствительности определения объемной концентрации осажденной влаги в жидких углеводородах достигается двумя путями.
1. Помещают осадок жидкого углеводорода с каплями влаги в пучность (в максимум) электрического поля колебания H011.
2. Прижимают капли воды диэлектриком, так чтобы они трансформировались в тонкий слой влаги.
На фиг. 1 представлена измерительная схема резонатора с каплями на твердой поверхности, помещенной в пучность (в максимум) электрического поля Eφ колебания H011. Осадок помещают на диэлектрическую пластину-основание, расположенную симметрично относительно середины длины ЦОР, диаметр равен диаметру резонатора, а ось пластины-основания совпадает с его осью. При этом, как и в прототипе, продольную ось ЦОР выбирают перпендикулярной горизонту.
Электрическое поле Eφ пространственного колебания H011 невозмущенного резонатора (см. Корбанский И.Н. Теория электромагнитного поля. - М.: ВВИА им. профессора Н.Е. Жуковского, 1964. - 356 с.) представляет собой замкнутые концентрические окружности, поле максимально по середине длины и радиуса, электрическое поле равно нулю на оси и у торцевых стенок. Модуль электрической составляющей
где l - высота резонатора.
Толщина диэлектрической пластины основания Δh должна быть на порядок меньше высоты резонатора l. Из (1) при амплитуда напряженности электрического поля на верхней торцевой стенке пластины составляет 99,7% от максимума, а при .
Поверхность пластины-основания параллельна силовым линиям электрического поля, поэтому электрическое поле согласно граничным условиям не должно деформироваться при переходе границы воздух-диэлектрик. Проведенный численный анализ электрического поля пространственного колебания H011 электромагнитного поля методом конечных элементов в системе COMSOL Multiphysics для резонатора возмущенного диэлектрической пластиной-основанием с толщиной, много меньшей высоты резонатора, подтверждает это: электрическое поле, как у пустого ЦОР, максимально по середине длины и радиуса и равно нулю на оси и у торцевых стенок, электрические силовые линии по-прежнему представляют собой замкнутые концентрические окружности, поле внутри диэлектрика по величине совпадает с полем пустого резонатора.
Трансформация капель воды в тонкий слой путем прижатия диэлектриком позволяет повысить чувствительность. Физической основой является влияние геометрии на поле в объеме этой капли.
Как известно (Кугушев A.M., Голубев Н.С. Основы радиоэлектроники. - М.: Энергия. 1969. С. 372-376), в объеме диэлектрического шарика электрическое поле деформируется из-за граничных условий (Фиг. 3). Напряженность электрического поля внутри шарика E2 связана с невозмущенной напряженностью электрического поля вне шарика Eφ следующим выражением
где εж - относительная диэлектрическая проницаемость жидкого углеводорода (для авиационного керосина εк≈2.1);
где nэ - коэффициент деполяризации, учитывающий форму эллипсоида. Для шара ; для эллипсоида вращения с отношением осей 100 nэ=0,0004.
Трансформация капель воды в тонкий слой эквивалентна увеличению отношения осей эллипсоида. С ростом этого отношения коэффициент деполяризации nэ уменьшается, поле внутри эллипсоида растет и приближается к значению поля вне Eφ эллипсоида.
С другой стороны, трансформация капель воды в тонкий слой приводит к тому, что межфазные границы исчезают и тонкий слой влаги становится частью поверхности диэлектрика. А как показывает электродинамический анализ (Фиг. 2), поле на поверхности диэлектрика практически не отличается от максимального значения в пустом резонаторе.
На фиг. 6 и 7 представлены результаты экспериментальных исследований нагруженной добротности для резонатора с каплями и с тонким слоем влаги на твердой поверхности соответственно. Дозировка влаги осуществлялась микрошприцем с точностью дозировки 0,01 мл. Доверительная вероятность измерений равна 0,9, число измерений (каждый раз влага заново дозировалась) - 10.
В экспериментальной установке определения нагруженной добротности применялся скалярный измеритель цепей Р2М-18. Измеритель обеспечивает визуализацию коэффициента передачи по мощности в диапазоне до 18 ГГц: точность измерения мощности составляет 0,001 дБ, а частоты - 0,001 МГц, обзор частоты в эксперименте устанавливался равным 1 МГц. В Р2М-18 обеспечивается автоматическое слежение за максимумом коэффициента передачи. Результаты измерений документируются. Внешний вид скалярного измерителя цепей Р2М-18 и измерительного ЦОР показаны на фиг. 5. Геометрия резонатора: диаметр - 152 мм, высота - 112 мм; возбуждающая и приемные петли выступают от плоскости боковой стенки примерно на 1,5-2,0 мм, при этом плоскости петель перпендикулярны оси резонатора Z, а одна из торцевых стенок выполнена подвижной без гальванического контакта с боковой стенкой. Отношение квадрата диаметра к квадрату длины резонатора в экспериментальном резонаторе равно 2,25. Такой выбор «короткого» резонатора устраняет перепутывание рабочего колебания H011 с другими пространственными модами. Диэлектрическая пластина выполнена из ФТ-5 толщиной 5 мм. Пластина устанавливалась посередине длины резонатора с помощью трех специальных держателей. Абсолютное значение резонансной частоты с диэлектрической пластиной f0=2758,834 МГц.
Нагруженная добротность определялась по формуле
,
где Δf - полоса пропускания, определяемая по уровню половинной мощности (минус 3 дБ от уровня, соответствующего максимуму резонансной кривой). Прижатие капель осуществлялось диэлектрической пластиной из кварцевого стекла толщиной 100 мкм. Толщину диэлектрической пластины необходимо выбирать на порядок меньше толщины диэлектрической пластины-основания, так чтобы СВЧ-потери в этой диэлектрической пластине не влияли общие потери в резонаторе и, следовательно, на результат определения влагосодержания. Материал диэлектрической прижимной пластины и пластины-основания должен обладать малыми СВЧ-потерями (кварцевое стекло, полиэтилен, фторопласт).
Из результатов, полученных в ходе эксперимента, можно сделать вывод, что размещение осадка жидкого углеводорода с каплями влаги в пучность (в максимум) электрического поля колебания H011 повышает чувствительность к наличию осажденной влаги по сравнению с прототипом. Это объясняется тем, что в прототипе максимальная чувствительность наблюдается при возбуждении пространственного колебания E010, распределение энергии электрического поля которого равномерно по длине (не имеет экстремума по длине). При этом добротность колебания H011 пустого резонатора в 5÷10 раз выше колебания E010.
Трансформация капель воды в тонкий слой путем прижатия диэлектрической пластиной приводит к тому, что межфазные границы исчезают и тонкий слой влаги становится частью поверхности диэлектрика. Электрическое поле на поверхности диэлектрика практически не отличается от максимального значения в пустом резонаторе. Это дополнительно на порядок повышает чувствительность.
название | год | авторы | номер документа |
---|---|---|---|
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ | 2014 |
|
RU2559840C1 |
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ | 2014 |
|
RU2571632C1 |
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ | 2010 |
|
RU2451929C1 |
СВЧ - СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВЛАГИ И СТЕПЕНИ ЕЕ ЗАСОЛЕННОСТИ В ЖИДКИХ СРЕДАХ | 2002 |
|
RU2244293C2 |
СВЧ-способ определения свободной воды в жидких углеводородах | 2023 |
|
RU2806026C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ВЯЗКОСТИ ТОПЛИВ | 2011 |
|
RU2488807C2 |
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ РАСТВОРЕННОЙ И ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ | 2006 |
|
RU2301418C1 |
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ НАЛИЧИЯ ВЗВЕШЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ | 2006 |
|
RU2306552C1 |
СПОСОБ ПЕРЕСТРОЙКИ ЦИЛИНДРИЧЕСКОГО ОБЪЕМНОГО РЕЗОНАТОРА С КОЛЕБАНИЕМ E | 2002 |
|
RU2231178C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НАЛИЧИЯ ВЗВЕШЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ | 2014 |
|
RU2568678C2 |
Изобретение относится к способам определения влажности. Оно может найти применение в нефтехимической промышленности, в частности для экспресс-контроля качества авиационных керосинов в условиях аэродрома. Техническим результатом предлагаемого изобретения является повышение чувствительности определения объемной концентрации осажденной влаги в жидких углеводородах. Данный технический результат достигается тем, что в известном способе определения объемной концентрации осажденной влаги в жидких углеводородах, заключающемся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа H011, измерении изменения добротности, вызванного наличием осажденной влаги, дополнительно исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги, капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания. 7 ил.
Способ определения объемной концентрации осажденной влаги в жидких углеводородах, заключающийся в помещении исследуемого жидкого углеводорода в полость цилиндрического объемного резонатора с продольной осью, перпендикулярной горизонту жидкости, удалении через время t≥10 с жидкого углеводорода из полости резонатора с оставлением влаги, возбуждении электромагнитного колебания типа Н011, измерении изменения добротности, вызванное наличием осажденной влаги, отличающийся тем, что исследуемый жидкий углеводород через открытую верхнюю торцевую стенку помещают в полость резонатора над диэлектрической пластиной-основанием, расположенной симметрично относительно середины длины, с диаметром, равным диаметру резонатора, и толщиной, много меньшей его высоты, при этом ось пластины-основания совмещают с осью цилиндрического объемного резонатора, после удаления исследуемого жидкого углеводорода с оставлением влаги капли влаги прижимают диэлектрической пластиной, закрывают верхнюю торцевую стенку, диаметр прижимной диэлектрической пластины выбирают равным диаметру резонатора, а толщину - на порядок меньше толщины диэлектрической пластины-основания.
СВЧ-СПОСОБ ОПРЕДЕЛЕНИЯ ОСАЖДЕННОЙ ВЛАГИ В ЖИДКИХ УГЛЕВОДОРОДАХ | 2010 |
|
RU2451929C1 |
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ СМЕСИ И ДАТЧИК ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2372608C1 |
СВЧ-РЕЗОНАТОРНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМНОЙ ДОЛИ ВЛАГИ В ЖИДКИХ СРЕДАХ | 2007 |
|
RU2334217C1 |
JP 2002071585 A, 08.03.2002 | |||
Устройства для отверждения модифицированной древесины | 1973 |
|
SU447257A1 |
СПОСОБ РЕНТГЕНОВСКОГО КОНТРОЛЯ ТОЛЩИНЫ СЛОЕВ ТРИПЛЕКСНОЙ МЕТАЛЛИЧЕСКОЙ ЛЕНТЫ | 2005 |
|
RU2285236C1 |
US 5073756 A, 17.12.1991. |
Авторы
Даты
2015-12-20—Публикация
2014-11-25—Подача