СПОСОБ РЕНТГЕНОВСКОГО КОНТРОЛЯ ТОЛЩИНЫ СЛОЕВ ТРИПЛЕКСНОЙ МЕТАЛЛИЧЕСКОЙ ЛЕНТЫ Российский патент 2006 года по МПК G01B15/02 

Описание патента на изобретение RU2285236C1

Изобретение относится к области контрольно-измерительной техники, в частности к рентгеновским средствам измерения толщины слоев триплексной металлической ленты, то есть выполненной из трехслойного материала, например, типа латунь-сталь-латунь, используемой при изготовлении гильз для патронов и снарядов, и может применяться в военной технике, атомной энергетике и других отраслях.

Известны способы рентгеновского контроля толщины металлической ленты, реализованные в устройствах контроля, заключающиеся в просвечивании контролируемой ленты прямым потоком источника рентгеновского излучения, в первичном детектировании прямого потока излучения после просвечивания им ленты, а затем во вторичном детектировании потока излучения, но отраженного от структуры материала ленты, в обработке продетектированных сигналов и их визуальном воспроизведении [см. например, описание к патенту RU №2221220, опубликовано 10.01.2004].

Недостатком известных способов рентгеновского контроля толщины являются ограниченные функциональные возможности, заключающиеся в контроле эквивалентной толщины ленты, и не обеспечивают достоверное измерение толщины ленты послойно из-за низкой точности измерения и разрешающей способности.

Также известен способ рентгеновского контроля толщины многослойных покрытий цилиндрической формы, заключающийся в просвечивании прямым потоком излучения контролируемой ленты, в первичном детектировании прямого потока излучения и вторичном детектировании отраженного от структуры материала ленты потока рентгеновского излучения, в обработке продетектированных сигналов и их визуальном воспроизведении [описание к патенту RU №2253837, опубликовано 10.06.2005].

Это техническое решение позволяет измерять толщину слоев покрытий удовлетворительно, однако разрешающая способность при этом недостаточная, поскольку прямой поток излучения в зоне контакта с контролируемой лентой имеет большую "размытую" площадь просвечивания, а детектируемый отраженный поток еще более увеличивается в своем сечении, поэтому на вторичное детектирование попадает только часть отраженного потока. Очевидно, что остальная информационная часть потока теряется и поэтому метрологические показатели способа и его разрешающая способность недостаточные.

Техническим результатом от реализации предложенного изобретения являются широкие функциональные возможности, высокая точность и разрешающая способность измерения послойной толщины триплексной металлической ленты за счет квазиполного использования энергии рентгеновского потока, достигаемого тем, что прямой и отраженный потоки рентгеновского излучения перед детектированием локализуют в узкий пучок вдоль поперечного сечения исследуемой ленты и сканируют отраженный локальный пучок излучения.

Сущность заявляемого технического решения заключается в том, что контролируемую триплексную (трехслойную) ленту просвечивают излучаемыми в противофазе коллимированными первым и дополнительным прямыми потоками импульсного рентгеновского излучения с противоположных поверхностей ленты навстречу друг другу, оба потока детектируют дважды - до просвечивания и после просвечивания ленты, при этом коллимирование данных потоков осуществляют с формой в виде щелей, ориентированных параллельно друг другу вдоль поперечного сечения ленты, дополнительно коллимируют и детектируют отраженные потоки импульсного рентгеновского излучения от материала ленты, при этом коллимирование данных потоков, также как и коллимирование прямых потоков осуществляют с формой в виде щелей, ориентированных параллельно друг другу вдоль поперечного сечения ленты, а детектирование выполняют синхронным сканированием отраженного излучения на угол, перекрывающий апертуру коллимированных прямых потоков, по продетектированным сигналам от первого и дополнительного прямых потоков импульсного рентгеновского излучения судят о совокупной толщине ленты, по продетектированным сигналам от первого и дополнительного отраженных потоков импульсного рентгеновского излучения судят соответственно о толщине верхнего и нижнего слоев ленты, а толщину среднего слоя определяют на основании совокупной толщины ленты и толщины ее верхнего и нижнего слоев.

На чертеже приведена блок-схема, иллюстрирующая способ рентгеновского контроля толщины слоев триплексной металлической ленты.

Предложенный способ заключается в том, что прямой поток импульсного рентгеновского излучения излучателем 1 коллимируют коллиматором 2, детектируют детектором 5, затем продетектированным потоком просвечивают триплексную (трехслойную) ленту в направлении, нормальном к ней, и просветивший ленту прямой поток, вновь детектируют в детекторе 6. Новизна способа состоит в том, что осуществляют дополнительное просвечивание трехслойной ленты прямым потоком импульсного рентгеновского излучения излучателем 3 через коллиматор 4 в противофазе с первым прямым потоком, излучаемым излучателем 1, но с противоположной стороны ленты строго навстречу первому потоку. Отраженные потоки излучения от структуры материалов ленты с обеих ее сторон коллимируют и детектируют в коллиматорах 7, 9 и детекторах 8, 10 соответственно. Коллимирование прямых и отраженных потоков импульсного излучения выполняют тонкоплоской формы в виде щели, направление каждой из которых ориентируют параллельно друг другу вдоль поперечного сечения ленты. Операции коллимирования и детектирования отраженных потоков выполняют синхронным сканированием относительно точки пересечения прямых потоков и плоскости ленты на угол, перекрывающий апертуру коллимированных прямых потоков.

Противофазное просвечивание ленты потоками импульсного рентгеновского излучения обеспечивает попеременное измерение толщины, например, сначала верхнего слоя ленты по отраженному первому прямому потоку, а затем нижнего слоя ленты по отраженному дополнительному потоку излучения, причем в обоих случаях измеряется совокупная толщина ленты.

Работает способ следующим образом.

Контролируемую трехслойную ленту просвечивают в противофазе коллимированными первым и дополнительным потоками рентгеновского излучения с противоположных поверхностей (верхней и нижней) ленты навстречу друг другу. Коллимирование прямых первого и дополнительного потоков осуществляют в форму тонкой (узкой), но продольной линии, ориентированной вдоль поперечного сечения ленты. Оба потока дважды детектируют до просвечивания и после просвечивания ленты. По изменению продетектированных первичного и вторичного сигналов первого и дополнительного прямых потоков судят о совокупной (эквивалентной) толщине ленты, при этом измеренная толщина должна быть в обоих случаях равной.

Кроме того, прямой и дополнительный отраженные потоки от структуры материала ленты коллимируют и детектируют. Причем коллимирование отраженных потоков от структуры материала ленты выполняют одинаковым по форме и размерам с коллимированными прямыми потоками, а формы коллимирования ориентируют параллельно друг другу вдоль поперечного сечения ленты как прямых, так и отраженных потоков. Операции коллимирования и детектирования отраженных потоков выполняют синхронным сканированием относительно точки пересечения данных потоков и плоскости ленты на угол, перекрывающий апертуру коллимированных прямых потоков.

Толщину, например, верхнего слоя ленты определяют по продетектированному сигналу отраженного первого потока излучения, а толщину нижнего слоя ленты - по продетектированному сигналу отраженного дополнительного потока. Толщину среднего слоя ленты вычисляют, исходя из найденных значений крайних толщин слоев ленты и совокупной ее толщины.

Техническим результатом изобретения являются широкие функциональные возможности, высокая точность и разрешающая способность измерения послойной толщины триплексной металлической ленты за счет квазиполного использования энергии рентгеновского потока, достигаемого тем, что прямой и отраженный потоки рентгеновского излучения перед детектированием локализуют в узкий пучок вдоль поперечного сечения исследуемой ленты и, кроме того, сканируют отраженный локальный пучок излучения.

Похожие патенты RU2285236C1

название год авторы номер документа
СПОСОБ РЕНТГЕНОВСКОГО КОНТРОЛЯ ТОЛЩИНЫ СЛОЕВ БИМЕТАЛЛИЧЕСКОЙ ЛЕНТЫ 2005
  • Маслов Александр Иванович
  • Запускалов Валерий Григорьевич
  • Артемьев Борис Викторович
  • Волчков Юрий Евгеньевич
  • Мирош Юрий Михайлович
  • Бобров Александр Петрович
RU2281459C1
УСТРОЙСТВО ДЛЯ РЕНТГЕНОВСКОГО КОНТРОЛЯ ТОЛЩИНЫ СЛОЕВ ТРЕХСЛОЙНОЙ МЕТАЛЛИЧЕСКОЙ ЛЕНТЫ 2005
  • Маслов Александр Иванович
  • Запускалов Валерий Григорьевич
  • Артемьев Борис Викторович
  • Волчков Юрий Евгеньевич
  • Гусев Владимир Евгеньевич
  • Созонтов Андрей Александрович
RU2288448C1
РЕНТГЕНОВСКИЙ СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ЛИСТОВЫХ ИЗДЕЛИЙ 2002
  • Маслов А.И.
  • Запускалов В.Г.
  • Владимиров Л.В.
  • Гусев В.Е.
  • Артемьев Б.В.
  • Волчков Ю.Е.
  • Бояринцев Д.С.
  • Ведерников М.Б.
RU2234677C2
УСТРОЙСТВО ДЛЯ РЕНТГЕНОВСКОГО КОНТРОЛЯ ТОЛЩИНЫ СЛОЕВ БИМЕТАЛЛИЧЕСКОЙ ЛЕНТЫ 2005
  • Маслов Александр Иванович
  • Запускалов Валерий Григорьевич
  • Артемьев Борис Викторович
  • Волчков Юрий Евгеньевич
  • Гусев Владимир Евгеньевич
  • Созонтов Андрей Александрович
  • Лукьяненко Эдуард Александрович
RU2289097C1
РЕНТГЕНОВСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИЗДЕЛИЯ 2006
  • Маслов Александр Иванович
  • Запускалов Валерий Григорьевич
  • Артемьев Борис Викторович
  • Ролик Владимир Андреевич
  • Созонтов Александр Александрович
  • Евилин Григорий Васильевич
RU2312306C1
РАДИАЦИОННЫЙ СПОСОБ КОНТРОЛЯ ТОЛЩИНЫ ПРОКАТА 2004
  • Маслов А.И.
  • Запускалов В.Г.
  • Артемьев Б.В.
  • Волчков Ю.Е.
RU2262663C1
РЕНТГЕНОВСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛИСТОВОГО ПРОКАТА ИЗ МОНЕТНОГО СПЛАВА 2005
  • Маслов Александр Иванович
  • Запускалов Валерий Григорьевич
  • Волчков Юрий Евгеньевич
  • Артемьев Борис Викторович
  • Мирош Юрий Михайлович
  • Бобров Александр Петрович
RU2280239C1
СПОСОБ РАДИАЦИОННОГО ИССЛЕДОВАНИЯ ВНУТРЕННЕЙ СТРУКТУРЫ ОБЪЕКТОВ 1992
  • Шахиджанов Сергей Сумбатович
RU2069853C1
ОПТИЧЕСКИЙ ДАТЧИК (ВАРИАНТЫ), ОБЪЕКТИВ (ВАРИАНТЫ) И ОПТИЧЕСКИЙ АДАПТЕРНЫЙ ПРИБОР (ВАРИАНТЫ) 1998
  • Дзанг-Хун Йоо
  • Чонг-Сам Чунг
  • Чул-Ву Ли
  • Кун-Хо Чо
RU2155389C2
СВЕТОИЗЛУЧАЮЩЕЕ УСТРОЙСТВО И СПОСОБ ИЗЛУЧЕНИЯ СВЕТА 2009
  • Ван Горком Рамон П.
  • Рейке Арей Й.
  • Як Мартин Й. Й.
RU2502918C2

Реферат патента 2006 года СПОСОБ РЕНТГЕНОВСКОГО КОНТРОЛЯ ТОЛЩИНЫ СЛОЕВ ТРИПЛЕКСНОЙ МЕТАЛЛИЧЕСКОЙ ЛЕНТЫ

Изобретение относится к области контрольно-измерительной техники, в частности к рентгеновским средствам измерения толщины слоев триплексной (трехслойной) металлической ленты, используемой при изготовлении гильз для патронов и снарядов и т.д. Способ рентгеновского контроля толщины слоев триплексной металлической ленты заключается в том, что контролируемую триплексную ленту просвечивают излучаемыми в противофазе коллимированными первым и дополнительным прямыми потоками импульсного рентгеновского излучения с противоположных поверхностей ленты навстречу друг другу, оба потока детектируют дважды - до просвечивания и после просвечивания ленты, при этом коллимирование данных потоков осуществляют с формой в виде щелей, ориентированных параллельно друг другу вдоль поперечного сечения ленты, дополнительно коллимируют и детектируют отраженные потоки импульсного рентгеновского излучения от материала ленты, при этом коллимирование данных потоков осуществляют с формой в виде щелей, ориентированных параллельно друг другу вдоль поперечного сечения ленты, а детектирование выполняют синхронным сканированием отраженного излучения на угол, перекрывающий апертуру коллимированных прямых потоков, по продетектированным сигналам судят о толщине каждого из слоев ленты. Техническим результатом от реализации изобретения являются широкие функциональные возможности, высокая точность и разрешающая способность измерения послойной толщины триплексной металлической ленты. 1 ил.

Формула изобретения RU 2 285 236 C1

Способ рентгеновского контроля толщины слоев триплексной металлической ленты, заключающийся в том, что контролируемую триплексную (трехслойную) ленту просвечивают излучаемыми в противофазе коллимированными первым и дополнительным прямыми потоками импульсного рентгеновского излучения с противоположных поверхностей ленты навстречу друг другу, оба потока детектируют дважды - до просвечивания и после просвечивания ленты, при этом коллимирование данных потоков осуществляют с формой в виде щелей, ориентированных параллельно друг другу вдоль поперечного сечения ленты, дополнительно коллимируют и детектируют отраженные потоки импульсного рентгеновского излучения от материала ленты, при этом коллимирование данных потоков, также как и коллимирование прямых потоков, осуществляют с формой в виде щелей, ориентированных параллельно друг другу вдоль поперечного сечения ленты, а детектирование выполняют синхронным сканированием отраженного излучения на угол, перекрывающий апертуру коллимированных прямых потоков, по продетектированным сигналам от первого и дополнительного прямых потоков импульсного рентгеновского излучения судят о совокупной толщине ленты, по продетектированным сигналам от первого и дополнительного отраженных потоков импульсного рентгеновского излучения судят соответственно о толщине верхнего и нижнего слоев ленты, а толщину среднего слоя определяют на основании совокупной толщины ленты и толщины ее верхнего и нижнего слоев.

Документы, цитированные в отчете о поиске Патент 2006 года RU2285236C1

РЕНТГЕНОВСКОЕ УСТРОЙСТВО КОНТРОЛЯ ТОЛЩИНЫ МНОГОСЛОЙНЫХ ПОКРЫТИЙ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ 2004
  • Маслов А.И.
  • Запускалов В.Г.
  • Артемьев Б.В.
  • Мартынов С.А.
RU2253837C1
РЕНТГЕНОВСКИЙ ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ ПРОКАТА 2002
  • Маслов А.И.
  • Запускалов В.Г.
  • Артемьев Б.В.
  • Гусев В.Е.
  • Волчков Ю.Е.
  • Босамыкин В.А.
  • Бояринцев Д.С.
  • Ведерников М.Б.
  • Потапов В.Н.
RU2221220C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТОЛЩИНЫ МЕТАЛЛИЧЕСКОГО ЛИСТА 1991
  • Безлюдько Г.Я.
  • Величко А.Ф.
  • Касьянов С.В.
  • Рябов В.А.
  • Пономарев В.И.
  • Шевченко С.Г.
RU2062979C1
РЕНТГЕНОВСКИЙ ТОЛЩИНОМЕР 2000
  • Маслов А.И.
  • Запускалов В.Г.
  • Егоров И.В.
  • Артемьев Б.В.
  • Ролик В.А.
  • Федоров В.А.
RU2189008C1
Способ измерения толщины покрытия 1985
  • Забродский Виталий Антонович
SU1245881A1
Устройство для измерения толщины антенных обтекателей на свч 1972
  • Арбузов Александр Николаевич
  • Смирнов Виктор Нилович
SU444052A1
US 4803715 А, 07.02.1989
US 5204889 А, 20.04.1993.

RU 2 285 236 C1

Авторы

Маслов Александр Иванович

Запускалов Валерий Григорьевич

Артемьев Борис Викторович

Волчков Юрий Евгеньевич

Созонтов Андрей Александрович

Даты

2006-10-10Публикация

2005-06-27Подача