СПОСОБ ГАЗОРАЗДЕЛЕНИЯ И ГАЗОРАЗДЕЛИТЕЛЬНОЕ УСТРОЙСТВО Российский патент 2015 года по МПК B01D61/00 B01D63/02 

Описание патента на изобретение RU2571636C1

Область техники

Заявляемая группа технических решений относится к области мембранного газоразделения и предназначена для разделения газовой смеси на ретентат и пермеат.

Предшествующий уровень техники.

Среди способов газоразделения известен способ работы мембранного газоразделительного модуля (патент РФ №115239 на полезную модель, МПК B01D 63/02, 2012, [1]). Как и в заявляемом техническом решении, указанный аналог включает подачу разделяемой газовой смеси в газоразделительный модуль, где расположены газоразделительные полые волокна, и разделение газовой смеси на продукт и пермеат. При этом, с целью увеличения эффективности газоразделения, частью продукта продувают пермеат.

У аналога [1] отделяемая от газовой смеси часть газа (пермеата) проникает через полупроницаемое покрытие полых волокон в их внутренние каналы и из этих каналов поступает в полость для пермеата. Из этой полости пермеат выводится из мембранного газоразделительного модуля. Непроникший газ поступает в полость для продукта, из которой он выводится к потребителю.

Недостатком указанного аналога [1] является то, что продувку пермеата осуществляют частью продукта. В этом случае возрастают затраты энергии на газоразделение, так как часть часть продукта расходуется на продувку.

Также известен способ получения газообразного азота (патент РФ №2042408 на изобретение, МПК B01D 61/00, B01D 63/00, B01D 53/22, 1995 [2]). Как и в заявляемом техническом решении, указанный аналог включает подачу сжатого воздуха в мембранный блок, разделение воздуха на остаточный азот и пермеат, и промывку пермеата.

Способ [2], в общем случае, осуществляют с двумя или более мембранными блоками посредством сбора остаточного потока азота ступени N и использования этого собранного потока в качестве потока подачи на ступень N+1, сбора потока пермеата ступени N+1 и подачи его в поток пермеата ступени N, т.е. предыдущей ступени, предпочтительно противоточным промывочным образом и сбора пермеата первой ступени и остаточного потока последней ступени. При этом давление на стороне остатка или стороне запитки ступени N больше давления на стороне запитки любой последующей ступени, например N+1 или N+2. Наоборот, пермеат ступени N всегда имеет давление, которое выше давления по меньшей мере одного из пермеатов ступеней N-1, чтобы можно было промывать сторону пермеата мембраны. По этому способу производимый газ предпочтительно азот, а смесь подачи предпочтительно атмосферный воздух или смесь азота с кислородом.

Недостатком указанного аналога [2] является то, что промывку пермеата мембранного блока ступени N осуществляют пермеатом мембранного блока ступени N+1. Такой способ промывки является сложным и энергозатратным, так как для его осуществления необходимо несколько ступеней газоразделения.

Указанный аналог [2] является по совокупности существенных признаков наиболее близким аналогом того же назначения к заявляемому способу газоразделения. Поэтому он принят в качестве прототипа.

Среди устройств для газоразделения известен мембранный газоразделительный модуль (патент РФ №115239 на полезную модель, МПК B01D 63/02, 2012, [1]). Как и в заявляемом техническом решении, указанный аналог [2] содержит мембранный картридж, канал для ввода разделяемой газовой смеси и канал для продувки пермеата.

Аналог [1] также содержит канал для вывода продукта, канал для вывода пермеата, полость для продукта и полость для пермеата. При этом концы пучков волокон мембранного картриджа закреплены в верхней и нижней торцевых герметизирующих заливках. На нижнюю торцевую заливку картриджа установлена крышка с образованием с нижней торцевой заливкой полости, сообщающейся с входами внутренних каналов полых волокон. Канал для продувки пермеата выполнен в крышке картриджа и соединяет полость между крышкой и нижней торцевой заливкой картриджа с полостью для продукта. В канале для продувки установлен дроссельный элемент.

Недостатком указанного аналога [1] является то, что полость между крышкой и нижней торцевой заливкой сообщена с полостью для азота каналом для продувки. Во-первых, такая конструкция газоразделительного модуля является сложной. Во-вторых, как было указано выше, продувку пермеата осуществляют частью продукта. В этом случае возрастают затраты энергии на газоразделение, так как часть продукта расходуется на продувку.

Также известен генератор для получения газообразного азота из воздуха (патент РФ №2042408 на изобретение, МПК B01D 61/00, B01D 63/00, B01D 53/22, 1995 [2]). Как и в заявляемом техническом решении, указанный аналог [1] содержит мембранный блок, который включает множество мембран, селективно пропускающих кислород и задерживающих азот, вход для подачи газа, разделяемого вдоль внешней поверхности мембран и вход промывки для подачи промывочного потока.

Также аналог [2] имеет выходы для пермеата и остаточного газа. Вход промывки мембранного блока соединен с выходом пермеата мембранного блока N+1 ступени газоразделения.

Недостатком указанного аналога [2] является то, что вход промывки мембранного блока соединен с выходом пермеата мембранного блока со N+1 ступени газоразделения. В этом случае повышаются затраты энергии на газоразделение и усложняется конструкция генератора для получения газообразного азота, так как для продувки необходимо по крайней мере два мембранных блока.

Указанный аналог [2] является по совокупности существенных признаков наиболее близким аналогом того же назначения к заявляемому устройству для газоразделения. Поэтому он принят в качестве прототипа.

Раскрытие заявляемого технического решения

Техническим результатом, обеспечиваемым заявляемой группой технических решений, является снижение затрат энергии на газоразделение.

Другими техническими результатами являются упрощение конструкции газоразделительного устройства и экономия мембранных картриджей.

Сущность заявленного способа газоразделения состоит в том, что предварительно сжатую газовую смесь подают в газоразделительное устройство с мембранными элементами, где происходит разделение потока газовой смеси на пермеат и ретентат, и продувают пермеат. Отличается тем, что продувку пермеата осуществляют газовой смесью, отбираемой со входа газовой смеси газоразделительного устройства.

Вышеуказанная сущность является совокупностью существенных признаков заявленного технического решения, обеспечивающих достижение всех заявленных технических результатов.

В частных случаях допустимо выполнять техническое решение следующим образом.

Сжатую газовую смесь перед подачей в газоразделительное устройство желательно нагревают.

Упомянутую подачу газовой смеси на продувку предпочтительно осуществляют через запорный игольчатый вентиль.

Сущность заявленного газоразделительного устройства состоит в том, что газоразделительное устройство содержит мембранные элементы, вход газовой смеси и вход продувочного газа. Отличается тем, что вход продувочного газа соединен со входом газовой смеси.

Вышеуказанная сущность является совокупностью существенных признаков заявленного технического решения, обеспечивающих достижение всех заявленных технических результатов.

В частных случаях допустимо выполнять техническое решение следующим образом.

Вход газовой смеси желательно соединен с источником сжатой газовой смеси через нагреватель.

Вход продувочного газа предпочтительно соединен со входом газовой смеси через запорный игольчатый вентиль.

Авторами технических решений заявленной группы изготовлен опытный образец газоразделительного устройства, испытания которого подтвердили достижение технического результата.

Краткое описание чертежей

На фигуре показана схема способа газоразделения и газоразделительного устройства.

Осуществление способа газоразделения

Способ газоразделения осуществляют следующим образом.

Предварительно сжатую газовую смесь подают в газоразделительное устройство, содержащее корпус (1), мембранные элементы (2), вход газовой смеси (3), вход продувочного газа (4), выход ретентата (5) и выход пермеата (6). Вход продувочного газа (4) выполнен в корпусе (1).

Мембранные элементы (2) закреплены в корпусе (1) и могут представлять собой пучок, состоящий из множества половолоконных мембран. В газоразделительном устройстве происходит разделение потока газовой смеси на два: поток, не пропущенный мембраной, - ретентат и поток, проникший через мембрану, - пермеат. Движущей силой газоразделения является разность парциальных давлений газов по обе стороны мембраны. При этом пространство с одной стороны мембранных элементов заполняется пермеатом, а пространство с другой стороны мембранных элементов заполняется ретентатом. Увеличение концентрации пермеата приводит к возрастанию парциальных давлений газов, из которых он состоит. Это уменьшает перепад парциальных давлений газов с разных сторон мембранных элементов (2), тем самым уменьшая движущую силу процесса газоразделения.

С целью увеличения движущей силы газоразделения пермеат в газоразделительном устройстве продувают. Продувка снижает концентрацию пермеата с одной стороны мембраны, и тем самым увеличивает движущую силу газоразделения. Кроме того, продувка пермеата позволяет сократить количество мембранных картриджей, так как увеличение движущей силы газоразделения приводит к повышению их производительности. Таким образом, для достижения требуемой производительности требуется меньшее количество мембранных картриджей, чем у газоразделительных устройств без продувки пермеата.

С целью снижения затрат энергии на газоразделение, продувку пермеата осуществляют газовой смесью, отбираемой со входа газовой смеси (3) газоразделительного устройства.

Смесь пермеата и отбираемой газовой смеси выводится из газоразделительного устройства через выход пермеата (6). Ретентат поступает с выхода ретентата (5) к потребителю.

Примеры конкретного выполнения

Пример 1. Газовой смесью является воздух или смесь азота с кислородом. При этом пермеатом является поток газа, обогащенный кислородом, а ретентатом является поток газа, обогащенный азотом.

Пример 2. В случае, когда для повышения нефтеотдачи пластов в них подают азот, разделяемой газовой смесью является смесь азота с углеводородами, например метаном.

Пример 3. Газовую смесь перед подачей в газоразделительное устройство нагревают.

Пример 4. С целью регулирования давления отбираемой газовой смеси, упомянутую подачу газовой смеси на продувку осуществляют через запорный игольчатый вентиль (7).

Реализация заявляемого технического решения не ограничивается приведенными выше примерами.

Осуществление устройства для газоразделения

Газоразделительное устройство предназначено для разделения потока газовой смеси на два: поток, не пропущенный мембраной, - ретентат и поток, проникший через мембрану, - пермеат. Газоразделительное устройство содержит корпус (1), мембранные элементы (2), вход газовой смеси (3), вход продувочного газа (4), выход ретентата (5) и выход пермеата (6). Вход продувочного газа (4) выполнен в корпусе (1).

Мембранные элементы (2) закреплены в корпусе (1) и могут представлять собой пучок, состоящий из множества половолоконных мембран.

Вход газовой смеси (3) предназначен для соединения с источником сжатой разделяемой газовой смеси.

С целью продувки пермеата, вход продувочного газа (4) соединен со входом газовой смеси (3). По сравнению с аналогами [1, 2] при таком соединении снижаются затраты энергии на газоразделение и упрощается конструкция газоразделительного устройства.

Выход пермеата (6) предназначен для удаления из газоразделительного устройства пермеата и отбираемой газовой смеси.

Выход ретентата (5) предназначен для вывода ретентата из газоразделительного устройства.

Примеры конкретного выполнения

Пример 1. Газовой смесью является воздух или смесь азота с кислородом. При этом пермеатом является поток газа, обогащенный кислородом, а ретентатом является поток газа, обогащенный азотом.

Пример 2. В случае, когда для повышения нефтеотдачи пластов в них подают азот, разделяемой газовой смесью является смесь азота с углеводородами, например метаном.

Пример 3. С целью повышения производительности газоразделительного устройства, вход разделяемой газовой смеси (3) соединен с источником сжатой газовой смеси через нагреватель.

Пример 4. С целью регулирования давления отбираемой газовой смеси, вход продувочного газа (4) соединен со входом разделяемой газовой смеси (3) через запорный игольчатый вентиль (7).

Реализация заявляемого технического решения не ограничивается приведенными выше примерами.

Описание работы

Предварительно сжатую газовую смесь подают в газоразделительное устройство. В газоразделительном устройстве происходит разделение потока газовой смеси на два: поток, не пропущенный мембраной, - ретентат и поток, проникший через мембрану, - пермеат. Движущей силой газоразделения является разность парциальных давлений газов по обе стороны мембраны. При этом пространство с одной стороны мембранных элементов заполняется пермеатом, а пространство с другой стороны мембранных элементов заполняется ретентатом. Увеличение концентрации пермеата приводит к возрастанию парциальных давлений газов, из которых он состоит. Это уменьшает перепад парциальных давлений газов с разных сторон мембранных элементов (2), тем самым уменьшая движущую силу процесса газоразделения.

С целью увеличения движущей силы газоразделения пермеат в газоразделительном устройстве продувают. Продувка снижает концентрацию пермеата с одной стороны мембраны, и тем самым увеличивает движущую силу газоразделения. Кроме того, продувка пермеата позволяет сократить количество мембранных картриджей, так как увеличение движущей силы газоразделения приводит к повышению их производительности. Таким образом, для достижения требуемой производительности требуется меньшее количество мембранных картриджей, чем у газоразделительных устройств без продувки пермеата.

С целью снижения затрат энергии на газоразделение, продувку пермеата осуществляют газовой смесью, отбираемой со входа газовой смеси (3) газоразделительного устройства. Смесь пермеата и отбираемой газовой смеси выводится из газоразделительного устройства через выход пермеата (6). Ретентат поступает с выхода ретентата (5) к потребителю.

Промышленная применимость

Заявляемая группа технических решений реализована с использованием промышленно выпускаемых устройств и материалов и может быть применена на любом промышленном предприятии, где требуется получение и/или использование азота.

Похожие патенты RU2571636C1

название год авторы номер документа
СПОСОБ МЕМБРАННОГО ГАЗОРАЗДЕЛЕНИЯ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Ворошилов Игорь Валерьевич
  • Мальцев Геннадий Иванович
RU2645140C1
АЗОТНАЯ КОМПРЕССОРНАЯ СТАНЦИЯ (ВАРИАНТЫ) 2017
  • Ворошилов Игорь Валерьевич
  • Мальцев Геннадий Иванович
RU2659264C1
Способ очистки природного азотсодержащего газа высокого давления от гелия 2022
  • Маркелов Виталий Анатольевич
  • Аксютин Олег Евгеньевич
  • Слугин Павел Петрович
  • Шпигель Илья Гершевич
  • Вагарин Владимир Анатольевич
  • Павленко Вадим Владимирович
  • Кисленко Наталия Николаевна
  • Емельянов Павел Евгеньевич
  • Пырков Андрей Юрьевич
RU2801946C1
СПОСОБ ВЫДЕЛЕНИЯ АММИАКА ИЗ ЦИРКУЛЯЦИОННОГО ГАЗА СИНТЕЗА АММИАКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2023
  • Петухов Антон Николаевич
  • Крючков Сергей Сергеевич
  • Атласкин Артём Анатольевич
  • Воротынцев Андрей Владимирович
  • Воротынцев Илья Владимирович
  • Зарубин Дмитрий Михайлович
  • Степакова Анна Николаевна
  • Смородин Кирилл Александрович
  • Атласкина Мария Евгеньевна
RU2810484C1
СПОСОБ И УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ ГАЗОВ 2017
  • У Чжиминь
  • Чэнь Сяоцзюэ
  • Виллеманн Рикардо Луис
RU2744439C2
УСТРОЙСТВО И СПОСОБ ВЫДЕЛЕНИЯ МЕТАНА ИЗ ГАЗОВОЙ СМЕСИ, СОДЕРЖАЩЕЙ МЕТАН, ДИОКСИД УГЛЕРОДА И СЕРОВОДОРОД 2019
  • Винклер, Флориан
RU2790130C2
МЕМБРАННЫЙ ГАЗОРАЗДЕЛИТЕЛЬНЫЙ МОДУЛЬ 2015
  • Пигарев Анатолий Алексеевич
  • Букин Алексей Валентинович
  • Толстов Сергей Станиславович
RU2595699C1
Газоразделительное устройство для создания пригодной для дыхания огнеподавляющей гипоксической атмосферы 2021
  • Котляр Игорь Кимович
RU2756258C1
ГАЗОВАЯ КОМПРЕССОРНАЯ СТАНЦИЯ 2011
  • Ворошилов Игорь Валерьевич
  • Мосейко Дмитрий Александрович
  • Закира Евгений Сергеевич
RU2484302C1
УСТАНОВКА ОЧИСТКИ ГАЗА НИЗКОГО ДАВЛЕНИЯ ОТ СЕРОВОДОРОДА 2018
  • Абуталипов Урал Маратович
  • Китабов Андрей Николаевич
  • Иванов Артем Викторович
  • Старков Станислав Валерьевич
  • Равчеев Роман Васильевич
RU2693782C1

Реферат патента 2015 года СПОСОБ ГАЗОРАЗДЕЛЕНИЯ И ГАЗОРАЗДЕЛИТЕЛЬНОЕ УСТРОЙСТВО

Заявляемая группа технических решений относится к области мембранного газоразделения. Способ газоразделения состоит в том, что предварительно сжатую газовую смесь подают в газоразделительное устройство с мембранными элементами (2), где происходит разделение потока газовой смеси на пермеат и ретентат, и продувают пермеат, при этом продувку пермеата осуществляют газовой смесью, отбираемой со входа газовой смеси (3) газоразделительного устройства. Газоразделительное устройство содержит мембранные элементы (2), вход газовой смеси (3) и вход продувочного газа (4), при этом вход продувочного газа (4) соединен со входом газовой смеси (3). Технический результат - упрощение конструкции газоразделительного устройства и снижение затрат энергии на газоразделение. 2 н. и 4 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 571 636 C1

1. Способ газоразделения, включающий подачу предварительно сжатой газовой смеси в газоразделительное устройство с мембранными элементами, разделение потока газовой смеси на пермеат и ретентат, и продувку пермеата, отличающийся тем, что продувку пермеата осуществляют газовой смесью, отбираемой со входа газовой смеси газоразделительного устройства.

2. Способ по п. 1, отличающийся тем, что сжатую газовую смесь перед подачей в газоразделительное устройство нагревают.

3. Способ по п. 1, отличающийся тем, что упомянутую подачу газовой смеси на продувку осуществляют через запорный игольчатый вентиль.

4. Газоразделительное устройство, содержащее мембранные элементы, вход газовой смеси и вход продувочного газа, отличающийся тем, что вход продувочного газа соединен со входом газовой смеси.

5. Устройство по п. 4, отличающееся тем, что вход газовой смеси соединен с источником сжатой газовой смеси через нагреватель.

6. Устройство по п. 4, отличающееся тем, что вход продувочного газа соединен со входом газовой смеси через запорный игольчатый вентиль.

Документы, цитированные в отчете о поиске Патент 2015 года RU2571636C1

КАСКАДНЫЙ СПОСОБ ПОЛУЧЕНИЯ ГАЗООБРАЗНОГО АЗОТА И КАСКАДНЫЙ ГЕНЕРАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Кристиан Барб[Fr]
  • Доминик Мазюрель[Fr]
RU2042408C1
US 4119417 A, 10.10.1978
US 0006648944 B1, 18.11.2003
СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВ С ПРИМЕНЕНИЕМ МЕМБРАН С ПРОДУВКОЙ ПЕРМЕАТА ДЛЯ УДАЛЕНИЯ CO ИЗ ПРОДУКТОВ СЖИГАНИЯ 2009
  • Бейкер Ричард В.
  • Виджманс Йоханнс Джи.
  • Меркел Тимоти Си.
  • Лин Хайкинг
  • Даниелс Рамин
  • Томсон Скотт
RU2489197C2
КОВШ ДЛЯ ОДНОКОВШОВЫХ ЭКСКАВАТОРОВ 0
SU147148A1
АППАРАТ ДЛЯ ОЧИСТКИ ГАЗОВ 1991
  • Тахистов Юрий Васильевич
  • Маркевич Анатолий Владимирович
  • Комолов Владимир Васильевич
RU2021847C1
Способ фотоэлектрического определения мутности жидкости и устройство для его осуществления 1958
  • Забиров М.Г.
SU116066A1

RU 2 571 636 C1

Авторы

Ворошилов Игорь Валерьевич

Блохин Константин Андреевич

Даты

2015-12-20Публикация

2014-05-23Подача