СПОСОБ ПЕРЕРАБОТКИ АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ Российский патент 2015 года по МПК C22B21/00 

Описание патента на изобретение RU2572119C1

Изобретение относится к металлургии, в частности к кислотным способам переработки алюминийсодержащего сырья и может быть использовано при получении глинозема.

Известен солянокислотный способ получения глинозема путем кислотной обработки предварительно обожженного сырья, выпаривания осветленного хлоридного раствора с кристаллизацией гексагидрата хлорида алюминия (AlCl3·6H2O) с последующей кальцинацией его до оксида, который ввиду значительного содержания железа и других примесей (за исключением кремния), назван авторами «черновым глиноземом» (Справочник металлурга по цветным металлам. Производство глинозема. М:. Металлургия, 1970, С. 236-237). Далее этот промежуточный продукт перерабатывался по традиционной щелочной схеме Байера для удаления железа и получения глинозема металлургического качества.

К недостаткам данного способа получения глинозема относятся сложность технологической схемы, высокие энергозатраты при ее реализации, попадание хлоридов из кислотного цикла в щелочной и связанные с этим дополнительные потери щелочи, достигавшие 36-37 кг/т глинозема. По перечисленным причинам этот способ не нашел применения в промышленности.

Наиболее близким к заявленному способу является способ получения глинозема из высококремнистых бокситов через солянокислотное выщелачивание, включающий размол и обжиг алюминийсодержащего сырья при температуре до 700°С, обработку его соляной кислотой, разделение полученной пульпы на хлоридный раствор и сиштоф (отход, представляющий собой, главным образом, дисперсный кремнезем, промываемый водой перед отправкой в отвал), высаливание гексагидрата хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлороводородом, кальцинацию гексагидрата хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлороводорода на стадии кислотной обработки и высаливания (Elsner D., Jenkins D.H. and Sinha H.N. Alumina via hydrochloric acid leaching of high silica bauxites - process development. Light metals, 1984, p. 411-426).

Согласно этому способу гексагидрат хлорида алюминия выделялся из раствора путем высаливания газообразным хлороводородом, что позволило упростить технологическую схему, отказаться от процесса Байера и снизить энергозатраты. Однако содержание примесей в конечном продукте, особенно, хлора и железа, в 2 раза превышало допустимые для металлургического глинозема пределы.

К недостаткам данного способа следует также отнести энергозатратный прием поддержания водного баланса в технологическом цикле путем однократного испарения оборотной воды при пирогидролизе хлорида железа и прочих примесных хлоридов.

При высаливании AlCl3·6Н2О из раствора, содержащего хлориды железа и других примесных металлов, очень сложно обеспечить высокую чистоту целевого продукта, а его кальцинация является самым энергозатратным переделом. Расход тепловой энергии при кальцинации гексагидрата хлорида алюминия при 1100-1200°С достигает 15 ГДж/т полученного глинозема. К тому же, при кальцинации очень трудно избавиться от остаточного хлора, который оказывает крайне негативное влияние при электролитическом получении алюминия из глинозема.

В основу изобретения положена задача, заключающаяся в разработке способа получения металлургического глинозема из низкосортного сырья, позволяющего перерабатывать бедное высококремнистое железосодержащее природное и техногенное алюминиевое сырье.

Техническим результатом является повышение качества глинозема и снижение энергозатрат.

Достижение вышеуказанного технического результата обеспечивается тем, что в способе переработки алюминийсодержащего сырья, включающем обжиг алюминийсодержащего сырья, обработку обожженного материала соляной кислотой, разделение полученной пульпы на осветленный хлоридный раствор и сиштоф, промываемый водой перед отправкой в отвал, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлористым водородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлористого водорода на стадии кислотной обработки и высаливания, осажденный в процессе высаливания гексагидрат хлорида алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, раствор хлористого аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку гексагидрата хлорида алюминия, а обожженный материал перед кислотной обработкой подвергают водному выщелачиванию при отношении жидкой и твердой фаз, равном 0,6-1,4.

Раствор хлористого аммония перед смешиванием с алюминийсодержащим сырьем может быть подвергнут стадийному упариванию при многократном использовании греющего пара.

Выделившийся при упаривании хлорид аммония в качестве оборотного промпродукта может быть смешан с алюминийсодержащим сырьем.

Обожженный материал перед кислотной обработкой может быть подвергнут выщелачиванию промводой после промывки сиштофа.

При обработке кристаллов AlCl3·6Н2О водным аммиаком происходит псевдоморфное превращение хлорида алюминия в частично дегидратированный гидроксид алюминия - бемит (AlOOH). Размеры частиц твердой фазы при этом практически не изменяются.

Кальцинация бемита требует всего 2,15 ГДж тепловой энергии на 1 т полученного глинозема.

При обработке гексагидрата хлорида алюминия водным аммиаком образуется раствор хлорида аммония, который в отличие от солянокислых растворов не проявляет сильного коррозионного воздействия на аппаратуру, и может быть постадийно упарен в батарее обычных выпарных аппаратов с паровым нагревом и многократным использованием греющего пара, которые широко используются в промышленности минеральных солей и удобрений и дают 2-3-кратную экономию потребляемого тепла по сравнению с однократным испарением воды, как это происходит в прототипе, когда вся вода, вводимая в технологический цикл для промывки сиштофа, поступала на пирогидролиз.

Оборот хлорида аммония может быть рационально осуществлен добавкой упаренного раствора непосредственно перед операцией обжига. Возможен также оборот хлорида аммония в виде кристаллов, выделенных в процессе упаривания раствора.

При температуре свыше 196°С происходит разложение хлорида аммония на газообразные хлористый водород и аммиак. Хлористый водород реагирует с компонентами сырья, в первую очередь с железом, с образованием соответствующих хлоридов.

При этом высвобождающийся аммиак может быть абсорбирован водой и в виде водного раствора направлен на обработку кристаллов AlCl3·6Н2О.

Извлечение алюминия в раствор, в силу его химических свойств, происходит в основном на стадии солянокислотной обработки. Поскольку частичная хлоринация сырья происходит еще на стадии обжига, нагрузка на передел солянокислотной обработки снижается.

Таким образом, в данном способе реализуется оборот хлористого водорода (соляной кислоты) и оборот аммиака с минимизацией расхода реагентов и тепловой энергии.

Причинами поступления железа из алюминийсодержащего сырья в продукционный глинозем являются:

изоморфное соосаждение при кристаллизации AlCl3·6Н2О;

остатки маточного раствора на поверхности кристаллов AlCl3·6Н2О;

захват маточного раствора, инкапсулированного в кавернах кристаллов AlCl3·6Н2О.

Очевидно, что для исключения вышеперечисленных причин необходимо минимизировать содержание железа в осветленном растворе.

Поскольку на стадии обжига происходит, главным образом, образование хлоридов железа наиболее рациональным приемом является их выделение из обожженного продукта путем предварительного водного выщелачивания, что предотвращает их дальнейшее попадание в осветленный раствор. При этом раствор хлоридов железа направляют сразу на их разложение пирогидролизом.

Для минимизации ввода внешней воды в технологический цикл целесообразно осуществлять водное выщелачивание обожженного продукта промывными водами других переделов, например - промводой после промывки сиштофа.

Сущность изобретения поясняется технологической схемой переработки алюминийсодержащего сырья.

Способ переработки алюминийсодержащего сырья осуществляется следующим образом.

Алюминийсодержащее сырье в смеси с хлоридом аммония направляют на обжиг, где происходит частичная термическая активация сырья и разложение хлорида аммония. При этом хлористый водород взаимодействует с оксидными компонентами сырья, а высвободившийся газообразный аммиак абсорбируется водой с образованием водного аммиака. Таким образом, сырье проходит стадию обжига-хлоринации.

Обожженный продукт подвергают водному выщелачиванию, что позволяет на этом этапе перевести в раствор компоненты, прореагировавшие с хлороводородом, в первую очередь хлорид железа, и не допустить его попадания на стадию кислотной обработки. Алюминий при этом практически полностью остается в твердой фазе. Выщелачивание можно проводить водой, привносимой извне, но более целесообразно использовать для этого промводу после промывки сиштофа. Это позволяет минимизировать энергозатраты на стадии выпаривания, поскольку водный баланс может быть поддержан только выпариванием.

Далее для наиболее полного перевода целевого компонента в раствор обожженное сырье, выщелоченное водой, подвергают обработке соляной кислотой с получением пульпы, которую разделяют (например, фильтрованием) на твердую фазу - отвальный сиштоф, содержащий в основном кремнезем, и хлоридный раствор, где главным компонентом является алюминий. Сиштоф промывают водой, а образующуюся промводу направляют на водное выщелачивание оборотного продукта. Выделение алюминия из хлоридного раствора осуществляют путем барботирования газообразным хлороводородом, который вытесняет (высаливает) гексагидрат хлорида алюминия в виде кристаллов, подвергаемых в дальнейшем обработке (нейтрализации) водным аммиаком, поступающим со стадии обжига-хлоринации с образованием частично дегидратированного гидроксида алюминия (бемита) и раствора хлорида аммония. Бемит направляется на кальцинацию с получением товарного глинозема. Маточный раствор после высаливания гексагидрата хлорида алюминия поступает на стадию пирогидролиза, где происходит образование гидроксидов и оксидов других металлов, главным образом, - гематита. Регенерация соляной кислоты, как в виде водного раствора, так и газообразного хлороводорода осуществляется на стадии прогидролиза, сопровождающегося ректификацией. Оба эти оборотных реагента возвращают на стадии кислотной обработки и высаливания гексагидрата хлорида алюминия соответственно.

Раствор хлорида аммония направляется на стадийное упаривание с многократным использованием греющего пара.

Способ переработки алюминийсодержащего сырья иллюстрируется конкретным примером.

Навески сырья массой 100 г с содержанием основных компонентов, %: Al2O3 31,5; SiO2 5,7; Fe2O3 35,2; TiO2 8,5; CaO 0,22; MgO 0,2; Na2O 0,25; K2O 0,15; V2O5 0,1; Cr2O3 0,12; SO3 0,25; ППП 17,2 смешивали с навесками хлорида аммония массой 200 г. Смесь помещали в трубчатую лабораторную печь, нагретую до 300°С, и выдержали в ней в течение 3 ч. Выделяющийся газообразный аммиак барботировали через слой воды, получая таким образом водный аммиак. Обожженный материал выщелачивали водой в агитационном режиме при варьировании отношения жидкой и твердой фаз (Ж:Т). Полученный твердый продукт растворяли в 20-процентной соляной кислоте при 98°С, взятой в количестве, обеспечивающем переход в раствор алюминия, со стехиометрическим превышением, равным 1.1, в течение 3 ч. Образовавшуюся пульпу фильтровали и из осветленного раствора путем высаливания газообразным хлористым водородом кристаллизовали гексагидрат хлорида алюминия. Отфильтрованные кристаллы обрабатывали водным раствором аммиака. По результатам рентгенофазового анализа полученная таким образом твердая фаза представляла собой беспримесный бемит (AlOOH). Промытый водой бемит прокаливали в муфельной печи при 1100°С с получением глинозема, который по химическому и гранулометрическому составу полностью отвечал металлургическому глинозему марки Г-0.

Раствор после высаливания гексагидрата хлорида алюминия подвергали пирогидролизу с выделением железа и титана и др. малых примесей в виде оксидов. Хлораммонийный раствор, образовавшийся после обработки кристаллов AlCl3·6Н2О раствором аммиака, упаривали с выделением кристаллов хлорида аммония, который также рассматривался в качестве оборотного продукта.

Полученные результаты примеров реализации заявляемого способа, а также опыт по прототипу представлены в таблице, из данных которой следует, что во всех примерах реализации заявляемого способа удалось получить требуемое содержание Fe2O3 в глиноземе (не более 0,015%), в то время как в примере по прототипу оно оказалось вдвое выше. В примере на запредельное значение при недостатке воды, подаваемой на водное выщелачивание (Ж:Т=0,5, т.е. ниже нижнего предела), не обеспечивается требуемая чистота глинозема. При превышении верхнего заявляемого значения (Ж:Т=1,4) увеличение количества промывной воды уже становится избыточным и не влияет на содержание железа в прокаленном глиноземе.

Заявляемый способ обеспечивает достижение требуемого технического результата без введения в технологию посторонних реагентов.

Таблица Пример Реализуемый способ Отношение жидкой и твердой фаз при водной промывке обожженного продукта Содержание Fe2O3 в глиноземе, % 1 по прототипу 0 0,030 2 пример на запредельное значение 0,5 0,017 3 заявляемый 0,6 0,014 4 заявляемый 0,8 0,009 5 заявляемый 1,0 0,008 6 заявляемый 1,2 0,007 7 заявляемый 1,4 0,006 8 пример на запредельное значение 1,5 0,006

Похожие патенты RU2572119C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА 2012
  • Сенюта Александр Сергеевич
  • Панов Андрей Владимирович
RU2554136C2
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛУРГИЧЕСКОГО ГЛИНОЗЕМА (ВАРИАНТЫ) 2016
  • Сенюта Александр Сергеевич
  • Панов Андрей Владимирович
  • Мильшин Олег Николаевич
  • Слободянюк Эдуард Андреевич
  • Смирнов Андрей Андреевич
RU2647041C1
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА ИЗ НИЗКОСОРТНОГО АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ 2012
  • Панов Андрей Владимирович
  • Сенюта Александр Сергеевич
RU2562302C2
Способ получения металлургического глинозема кислотно-щелочным способом 2018
  • Тарасов Вадим Петрович
  • Наливайко Антон Юрьевич
  • Пак Вячеслав Игоревич
  • Иванов Максим Анатольевич
  • Киров Сергей Сергеевич
  • Кондратьева Елена Сергеевна
  • Божко Галина Геннадьевна
RU2705071C1
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА 2012
  • Сенюта Александр Сергеевич
  • Панов Андрей Владимирович
  • Сусс Александр Геннадьевич
  • Дамаскин Александр Александрович
RU2570077C2
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА 2012
  • Максимова Людмила Николаевна
  • Сенюта Александр Сергеевич
  • Панов Андрей Владимирович
RU2565217C2
СПОСОБ ПОЛУЧЕНИЯ ГЛИНОЗЕМА 2012
  • Сенюта Александр Сергеевич
  • Панов Андрей Владимирович
RU2564360C2
Способ получения глинозема, преимущественно из высококремнистого боксита 2022
  • Валеев Дмитрий Вадимович
  • Шопперт Андрей Андреевич
RU2801847C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ КРАСНЫХ ШЛАМОВ 2022
  • Зиновеев Дмитрий Викторович
  • Грудинский Павел Иванович
  • Дюбанов Валерий Григорьевич
  • Пасечник Лилия Александровна
RU2782894C1
СПОСОБ ВСКРЫТИЯ ВЫСОКОКРЕМНИСТОГО АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ 1999
  • Винокуров С.Ф.
  • Николаев И.В.
RU2153466C1

Реферат патента 2015 года СПОСОБ ПЕРЕРАБОТКИ АЛЮМИНИЙСОДЕРЖАЩЕГО СЫРЬЯ

Изобретение относится к способу переработки алюминийсодержащего сырья и может быть использовано при получении глинозема. Способ включает обжиг алюминийсодержащего сырья, обработку обожженного материала соляной кислотой, разделение полученной пульпы на осветленный хлоридный раствор и сиштоф, промываемый водой перед отправкой в отвал, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлороводородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлороводорода на стадии кислотной обработки и высаливания, осажденный в процессе высаливания гексагидрат хлорида алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, раствор хлорида аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку гексагидрата хлорида алюминия, а обожженный материал перед кислотной обработкой подвергают водному выщелачиванию при отношении жидкой и твердой фаз, равном 0,6-1,4. Обеспечивается повышение качества глинозема и снижение энергозатрат. 3 з.п. ф-лы, 1 табл., 1 ил.

Формула изобретения RU 2 572 119 C1

1. Способ переработки алюминийсодержащего сырья, включающий обжиг алюминийсодержащего сырья, обработку обожженного материала соляной кислотой, разделение полученной пульпы на осветленный хлоридный раствор и сиштоф, промываемый водой перед отправкой в отвал, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлороводородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлороводорода на стадии кислотной обработки и высаливания, отличающийся тем, что осажденный в процессе высаливания гексагидрат хлорида алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, раствор хлорида аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку гексагидрата хлорида алюминия, а обожженный материал перед кислотной обработкой подвергают водному выщелачиванию при отношении жидкой и твердой фаз, равном 0,6-1,4.

2. Способ по п. 1, отличающийся тем, что раствор хлорида аммония перед смешиванием с алюминийсодержащим сырьем подвергают стадийному упариванию при многократном использовании греющего пара.

3. Способ по п. 2, отличающийся тем, что выделившийся при упаривании хлорид аммония смешивают с алюминийсодержащим сырьем.

4. Способ по п. 1, отличающийся тем, что обожженный материал перед кислотной обработкой подвергают выщелачиванию промводой после промывки сиштофа.

RU 2 572 119 C1

Авторы

Дамаскин Александр Александрович

Максимова Людмила Николаевна

Слободянюк Эдуард Андреевич

Сенюта Александр Сергеевич

Сусс Александр Геннадьевич

Даты

2015-12-27Публикация

2013-10-08Подача