Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектроники, альтернативной энергетике и т.д.
Исследования последних лет показали, что материалы и покрытия с ультрамелкодисперсной структурой и наноструктурными упрочняющими элементами обладают улучшенными физико-химическими и механическими свойствами. Поэтому в последние годы во всем мире проводятся работы по разработке способов получения материалов с наноструктурой.
Основными проблемами измерений электрического сопротивления высокорезистивных объектов, проводимых при нагреве до 700-900°C, являются необходимость обеспечения хорошего механического контакта, что подразумевает и стабильный электрический контакт, во всем интервале температур, обеспечение равномерного прогрева образца с отсутствием температурных градиентов по его длине, сложность конструкции универсального зажима для образцов различной длины и ширины.
Известна установка для обработки нанокомпозитов в водородной плазме, содержащая СВЧ-печь, внутри которой размещен кварцевый реактор, представляющий собой цилиндр, зажатый между двумя фторопластовыми фланцами с вакуумным уплотнением из термостойкой резины, стянутыми друг к другу с помощью фторопластовых стержней, при этом к каждому из фланцев подведены вакуумные шланги, по одному из которых в реактор поступает водород, а через другой производится вакуумирование системы, состоящей из СВЧ-печи и реактора, при помощи механического насоса, при этом реактор выполнен с возможностью замены исследуемого образца, предпочтительно, при помощи съемной крышки, расположенной на одном из фланцев (И.М. Трегубов, О.В. Стогней, В.И. Пригожин и др. Термический нагрев тонкопленочных нанокомпозитов металл-диэлектрик в водородной плазме. Вестник Воронежского государственного технического университета, том 6, №3, 2010 г., г. Воронеж, стр.10-13 - прототип).
Принцип работы указанной установки заключается в следующем.
Сначала для вакумирования системы производится откачка воздуха до предельного значения при открытом натекателе. После этого производится подача водорода в реактор из баллона и осуществляется промывка всей системы водородом. Затем натекатель прикрывается для достижения рабочего давления в реакторе. При включении СВЧ-разряда в реакторе зажигается водородная плазма и производится требуемая обработка образцов из нанокомпозиционных материалов.
Основными недостатками является невозможность обеспечения равномерного прогрева образца с отсутствием температурных градиентов по его длине, сложность конструкции универсального зажима для образцов различной длины и ширины.
Задачей изобретения является устранение указанных недостатков и создание способа установки пленочных образцов в кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов, применение которого позволит испытывать образцы различной длины и ширины.
Решение указанной задачи достигается тем, что в предложенном способе установки пленочных образцов при измерении температурной зависимости электрического сопротивления, заключающемся в механическом креплении и фиксации образца в заданном положении с подведением к нему электрического тока при исследовании температурной зависимости электрического сопротивления пленочных образцов при нагреве, согласно изобретению, для нагрева пленочного образца и измерения его электрического сопротивления, образец помещают в корпус кварцевого реактора, причем внутри корпуса образец размещают в С-образных зажимах с плоскими губками, которые выполняют из вольфрамовой проволоки, при этом образец устанавливают в плоских губках с натягом, величина которого достаточна для удержания образца в заданном положении при нагреве С-образных зажимов, при этом упомянутые С-образные зажимы раскрепляют на растяжках, которые выполняют в виде пружин из вольфрамовой проволоки меньшего диаметра, после чего, при помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры, при этом через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение, причем измерение температуры образца осуществляют при помощи термопары, которую предварительно устанавливают в центральной части корпуса, при этом необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек.
Сущность изобретения иллюстрируется чертежом, где на фиг.1 показана принципиальная схема реактора.
Предложенный способ может быть реализован в кварцевом реакторе, имеющем следующую конструкцию.
Кварцевый реактор содержит корпус 1, на внешней поверхности которого бифилярно намотан резистивный нагреватель 2. Внутри корпуса 1 на растяжках 3, выполненных в виде пружин из вольфрамовой проволоки, установлены С-образные зажимы 4 с плоскими губками 5 для размещения исследуемого образца 6, выполненные из вольфрамовой проволоки. В стенке корпуса 1, в центральной его части, установлена термопара 7 с возможностью измерения температуры упомянутого образца 6, размещаемого в С-образных зажимах 4.
Предложенный способ может быть реализован в указанном кварцевом реакторе следующим образом.
Образец 6 закрепляется в С-образных зажимах 4, изготовленных из вольфрамовой проволоки. Образец 6 помещается в зазор между двумя плоскими губками 5 зажимов 4, причем, помещается с усилием, которое обеспечивается величиной требуемого натяга. Упругость вольфрамовой проволоки, согнутой кольцом, гарантирует высокое качество механического контакта на всем протяжении измерений. С-образные зажимы 4 одновременно выполняют роль электрических зондов. Вольфрамовые С-образные зажимы подвешиваются в центре корпуса 1 кварцевого реактора на растяжках 3, имеющих вид пружин, также выполненных из тонкой вольфрамовой проволоки. Пружины, находясь в растянутом состоянии, обеспечивают центрирование образца внутри корпуса 1 кварцевого реактора и оптимальное расстояние до термопары 7, с помощью которой осуществляется измерение температуры образца. Одновременно с функцией удержания образца 6 в центре корпуса 1 реактора пружины выполняют роль электрических выводов, посредством которых на образец подается измерительный ток и снимается напряжение. Нагрев образца в процессе измерения осуществляется с помощью резистивного нагревателя 2, бифилярно намотанного на внешней стенке корпуса 1 реактора.
Проведенные авторами и заявителем испытания полноразмерного кварцевого реактора для исследования температурной зависимости электрического сопротивления высокорезистивных объектов подтвердили правильность заложенных конструкторско-технологических решений.
Использование предложенного технического решения позволит создать кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов с обеспечением стабильного электрического контакта и равномерным прогревом образцов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ПЛЕНОЧНЫХ ОБРАЗЦОВ ПРИ НАГРЕВЕ | 2014 |
|
RU2573623C2 |
КВАРЦЕВЫЙ РЕАКТОР ДЛЯ ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ЭЛЕКТРОСОПРОТИВЛЕНИЯ ВЫСОКОРЕЗИСТИВНЫХ ОБЪЕКТОВ | 2014 |
|
RU2573624C2 |
КВАРЦЕВЫЙ РЕАКТОР ДЛЯ ИССЛЕДОВАНИЯ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ ЭЛЕКТРОСОПРОТИВЛЕНИЯ ВЫСОКОРЕЗИСТОРНЫХ ОБЪЕКТОВ | 2014 |
|
RU2581628C2 |
ИЗМЕРИТЕЛЬНАЯ ЯЧЕЙКА УСТАНОВКИ ДИФФЕРЕНЦИАЛЬНОГО ТЕРМИЧЕСКОГО АНАЛИЗА | 1999 |
|
RU2164681C1 |
УСТРОЙСТВО ДЛЯ МАНИПУЛИРОВАНИЯ МИКРО- И НАНООБЪЕКТАМИ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И СИСТЕМА УПРАВЛЕНИЯ | 2018 |
|
RU2698570C1 |
ЭЛЛИПСОМЕТРИЧЕСКИЙ КОМПЛЕКС ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ИССЛЕДОВАНИЙ | 2007 |
|
RU2353919C1 |
Устройство для исследования свойств металлов и сплавов | 1980 |
|
SU920485A1 |
ДЕРЖАТЕЛЬ ОБРАЗЦОВ ДЛЯ РЕНТГЕНОФАЗОВОГО АНАЛИЗА | 1993 |
|
RU2100798C1 |
Способ и устройство для установки термопар в образцы полимеризующихся материалов | 2018 |
|
RU2690919C1 |
УСТРОЙСТВО ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ИССЛЕДОВАНИЯ ТРУБЧАТЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ, СПОСОБ ПОДГОТОВКИ К ЭЛЕКТРОХИМИЧЕСКОМУ ИССЛЕДОВАНИЮ И СПОСОБ ИССЛЕДОВАНИЯ | 2019 |
|
RU2735584C1 |
Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора. Внутри корпуса образец размещают в С-образных зажимах с плоскими губками, выполненными из вольфрамовой проволоки. Образец устанавливают в плоских губках с натягом, величина которого достаточна для удержания образца в заданном положении при нагреве С-образных зажимов. С-образные зажимы раскрепляют на растяжках, выполненных в виде пружин из вольфрамовой проволоки меньшего диаметра. При помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры. Через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение. Измерение температуры образца осуществляют при помощи термопары, которую предварительно устанавливают в центральной части корпуса. Необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек. Обеспечивается стабильность электрического контакта и равномерный прогрев образцов. 1 ил.
Способ установки пленочных образцов при измерении температурной зависимости электрического сопротивления, заключающийся в механическом креплении и фиксации образца в заданном положении с подведением к нему электрического тока при исследовании температурной зависимости электрического сопротивления пленочных образцов при нагреве, характеризующийся тем, что для нагрева пленочного образца и измерения его электрического сопротивления образец помещают в корпус кварцевого реактора, причем внутри корпуса образец размещают в С-образных зажимах с плоскими губками, которые выполняют из вольфрамовой проволоки, при этом образец устанавливают в плоских губках с натягом, величина которого достаточна для удержания образца в заданном положении при нагреве С-образных зажимов, при этом упомянутые С-образные зажимы раскрепляют на растяжках, которые выполняют в виде пружин из вольфрамовой проволоки меньшего диаметра, после чего, при помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры, при этом через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение, причем измерение температуры образца осуществляют при помощи термопары, которую предварительно устанавливают в центральной части корпуса, при этом необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек.
Способ поверки терморезисторов | 1977 |
|
SU684341A1 |
Устройство для определения теплофизических свойств в стационарном тепловом режиме | 1982 |
|
SU1130786A1 |
СПОСОБ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ | 2000 |
|
RU2178200C1 |
Пиролитическое устройство для газовой хроматографии | 1987 |
|
SU1408367A1 |
РЕАКТОРЫ | 1997 |
|
RU2177830C2 |
US 3546436 A, 08.12.1970. |
Авторы
Даты
2015-12-27—Публикация
2014-01-09—Подача