Изобретение относится к области нанотехнологий и наноматериалов и может быть использовано в стоматологии и биомедицине.
Известен способ получения порошков пористого кремния.
Способ получения нанокристаллического кремния согласно изобретению включает реакцию спекания при температуре ~800 К тонкоизмельченного силицида магния и аэросила с последующим растворением и вымыванием оксида магния в подкисленном водном растворе с последующей очисткой порошка нанокристаллического кремния осаждением этанолом и растворением в трихлорметане.
Изобретение обеспечивает получение порошка нанокристаллического кремния, обладающего устойчивой яркой фотолюминесценцией, максимум интенсивности которой возможно сдвигать в области от 750 нм до 550 нм, а также позволяет получать частицы нанокристаллического кремния, сохраняющие люминесцентные свойства при высоких, до ~650 К, температурах в массовых количествах без использования дорогих и легковоспламеняющихся веществ (патент РФ 2 411 613, МПК H01L 33/02, опубл. 10.02.2011).
К недостаткам относится энергозатратность способа (высокие температуры получения), использование нагретой концентрированной плавиковой кислоты в процессе постобработки, которая является высокотоксичным реагентом.
Известен способ получения порошков пористого кремния нанометрового размера, включающий анодное электрохимическое травление в электролите исходного монокристаллического кремния в ячейке электрохимического травления (PUSHPENDRA KUMAR et al, Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon, “Journal of Nanomaterials”, 2007, Article ID 89718, 4 pages). Данный способ по решаемой задаче, достигаемому техническому результату является наиболее близким аналогом к заявляемому способу.
Технический результат - увеличение скорости травления монокристаллического кремния - достигается за счет того, что травление происходит в ячейке электрохимического анодного травления особой конфигурации с контрэлектродом из нержавеющей стали с последующей промывкой полученного пористого материала в дистиллированной воде, после чего его механически отделяют от кристаллической подложки, измельчают, а затем полученный порошок пористого кремния сушат в естественных условиях. При этом используется особый раствор электрохимического травления. Предлагаемый способ проиллюстрирован чертежами, где на фиг. 1 изображена схема ячейки электрохимического травления, а на фиг. 2 показано изображение порошка, полученного с помощью просвечивающего электронного микроскопа и электронограмма порошка.
Для реализации способа используется оригинальная ячейка электрохимического анодного травления (фиг. 1), состоящая из: фторопластовой ванны (1), в которой находится раствор электролита (2), U-образного контрэлектрода из нержавеющей стали (3), который в процессе электрохимического травления является катодом, и исходной пластины кристаллического кремния (4), которая в процессе электрохимического травления является анодом и на которой получается слой пористого кремния, а также системы контроля и установки тока (5), состоящей из источника постоянного тока со встроенным мультиметром.
Порошок получается анодным электрохимическим травлением монокристаллического кремния n-типа проводимости, легированного фосфором, с удельным сопротивлением менее 1.0 Ом·см.
Пластина прямоугольной формы размером 2 см × 1 см помещается в раствор электролита следующего состава: 1 об. части концентрированной плавиковой кислоты + 3 об. части диметилформамида (ДМФА) + 1 об. часть перекиси водорода (30%). Малое удельное сопротивление исходной кремниевой пластины обеспечивает равномерное распределение анодного потенциала по всей площади пластины, погруженной в раствор электролита при латеральном расположении электрода над поверхностью электролита.
Это позволяет избежать проблем, характерных для стандартного расположения кремниевой пластины в донной части кюветы, связанных с уплотнением пластины кремния, во избежание протечек электролита, содержащего агрессивную плавиковую кислоту. Травление проводится в режиме постоянного тока при плотности 15-20 мА/см2. Время травления можно варьировать от 10 до 60 мин, что позволяет изменять толщину пористого слоя в пределах от 10 до 80 мкм.
При увеличении времени травления свыше 60 минут резко падает плотность тока через пластину и эффективность травления существенно снижается. После завершения процесса травления пластина со слоем пористого кремния, образовавшегося с двух сторон пластины, промывается в дистиллированной воде и в изопропиловом спирте, затем пористый слой механически отделяется от пластины с помощью скребка и получившийся порошок помещается в ультразвуковую ванну, заполненную изопропиловым спиртом, в которой производится дробление частиц порошка в течение 20 минут до размера 200 нм и содержащих поры нанометрового размера (фиг. 2а).
После этого частицы порошка извлекаются из спирта выпариванием и высушиваются на воздухе в естественных условиях. За один сеанс удается получить от 10 до 30 мг порошка. Полученный порошок контролировали методом просвечивающей электронной микроскопии и дифракции электронов. Наличие достаточно четких колец на электронограммах подтверждает, что кремний в частицах находится в кристаллическом состоянии. Данный способ характеризуется существенно более высоким выходом частиц пористого кремния.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ПОРИСТОГО КРЕМНИЯ | 2014 |
|
RU2572128C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ | 2017 |
|
RU2652259C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКОВ ПОРИСТОГО КРЕМНИЯ | 2019 |
|
RU2722098C1 |
Способ получения нанопрофилированной ультратонкой пленки AlO на поверхности пористого кремния | 2015 |
|
RU2634326C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ КРЕМНИЕВЫХ БИОСОВМЕСТИМЫХ НАНОНОСИТЕЛЕЙ | 2014 |
|
RU2553913C1 |
Способ формирования слоя пористого кремния на кристаллической подложке | 2017 |
|
RU2703909C2 |
СПОСОБ ПОЛУЧЕНИЯ КРЕМНИЕВОЙ КАНАЛЬНОЙ МАТРИЦЫ | 2010 |
|
RU2433502C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО КРЕМНИЯ СО СТАБИЛЬНОЙ ФОТОЛЮМИНЕСЦЕНЦИЕЙ | 2014 |
|
RU2568954C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДНОЙ СУСПЕНЗИИ БИОСОВМЕСТИМЫХ ПОРИСТЫХ КРЕМНИЕВЫХ НАНОЧАСТИЦ | 2012 |
|
RU2504403C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПРОНИЦАЕМОЙ МЕМБРАНЫ | 2008 |
|
RU2365403C1 |
Изобретение относится к области нанотехнологий и наноматериалов. Наноразмерный порошок кремния получают травлением монокристаллического кремния в ячейке электрохимического травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор диметилформамида с добавлением плавиковой кислоты и 20% по объему перекиси водорода (30%). Технический результат - увеличение скорости травления монокристаллического кремния. 2 ил.
Способ получения порошков пористого кремния нанометрового размера, включающий анодное электрохимическое травление в электролите исходного монокристаллического кремния в ячейке электрохимического травления, отличающийся тем, что травление производят в ячейке электрохимического анодного травления с контрэлектродом U-образной формы из нержавеющей стали с последующим механическим отделением пористого слоя от подложки, его измельчением в изопропиловом спирте в ультразвуковой ванне и сушкой в естественных условиях, при этом в качестве электролита используют раствор диметилформамида с добавлением плавиковой кислоты и 20% по объему перекиси водорода (30%).
PUSHPENDRA KUMAR et al, Effect of Etching Parameter on Pore Size and Porosity of Electrochemically Formed Nanoporous Silicon, "Journal of Nanomaterials", 2007, Article ID 89718, 4 pages; | |||
HYOHAN KIM et al, Morphological and nanostructural features of porous silicon prepared by electrochemical etching, "Nanoscale Research Letters", 2012, 7(1):408;. |
Авторы
Даты
2015-12-27—Публикация
2014-07-29—Подача