Изобретение относится к области нанотехнологий и наноматериалов, в частности к методам роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников.
Известен способ осаждения наноразмерной пленки альфа- Al2O3 (0001) на металлические подложки (Патент РФ 2516366, МПК C23C 14/16, B82Y 30/00, опубл. 20.05.2014). В условиях сверхвысокого вакуума проводят нагрев, испарение и осаждение пленки оксида алюминия на металлическую подложку с определенной ориентацией кристаллов. Осуществляют осаждение испаряемого потока, состоящего из частиц AlO и (AlO)2. Испаряемый поток состоит из частиц AlO и (AlO)2, а после осаждения каждого последующего монослоя проводят экспозицию в молекулярном кислороде при парциальном давлении 10-7 мм рт. ст. в течение 3 минут при температуре подложки 700°C. Получается ориентированная высокостабильная наноразмерная пленка α- Al2O3 (0001) на чистой поверхности металла-подложки с сохранением межфазовой границы оксид-металл на атомном уровне.
К недостаткам этого способа относится энергозатратность способа (высокие температуры получения), использование исключительно металлической поверхности, что делает непригодным данный метод для использования в области нано и оптоэлектроники, а также взаимная диффузия атомов алюминия и подложки при высоких температурах.
Наиболее близким к заявляемому изобретению является способ импульсно-лазерного получения тонких пленок материалов с высокой диэлектрической проницаемостью на подложках кристаллического кремния в условиях сверхвысокого вакуума (Патент РФ 2306631, МПК H01L 021/316, опубл. 20.09.2007). Однако и он не лишен недостатков. Основным из них является малая площадь поверхности для формирования пленки (5×5 мм) и отсутствие структурирования пленки.
Техническая задача изобретения заключается в разработке эффективного способа создания нанопрофилированной ультратонкой пленки диоксида алюминия на поверхности пористого кремния, необходимой для использования в качестве оптических проводящих каналов.
Технический результат достигается тем, что нанопрофилированная пленка Al2O3 формируется методом ионно-плазменного распыления на слое пористого кремния с размерами пор менее 3 нм, полученного анодным электрохимическим травлением в электролите исходного монокристаллического кремния.
Технический результат заключается:
- в возможности формирования методом ионно-плазменного напыления ориентированных на поверхности пористого кремния нанонитей Al2O3;
- в значительной площади структурированной поверхности.
Способ получения нанопрофилированной ультратонкой пленки Al2O3 на поверхности монокристаллической полупроводниковой кремниевой пластины с поверхностным пористым слоем осуществляют в два этапа.
На первом этапе формируют пористый слой на пластине монокристаллического кремния. Для этого используется ячейка электрохимического анодного травления (фиг. 1).
В качестве исходных подложек используются пластины монокристаллического кремния, легированного бором, с высоким удельным сопротивлением от 5 до 10 Ом*см.
Предлагаемый способ проиллюстрирован чертежами, где на фиг. 1 изображена схема ячейки электрохимического травления. 1 - фторопластовая ванна, 2 - раствор электролита, 3 - U-образный контрэлектролит из нержавеющей стали, который в процессе электрохимического травления является катодом, 4 - исходная пластина кристаллического кремния, которая в процессе электрохимического травления является анодом и на которой получается слой пористого кремния, 5 - система контроля и установки тока, состоящая из источника постоянного тока со встроенным мультиметром.
Пластина прямоугольной формы размером 2 см × 1 см помещается в раствор электролита следующего состава: 2 объемные части концентрированной плавиковой кислоты (40%) + 2 объемные части изопропилового спирта +1 объемная часть перекиси водорода (30%). Высокое удельное сопротивление исходной полированной кремниевой пластины за счет малого количества примесных дефектов обеспечивает равномерное травление и однородное распределение пор по размерам.
Это позволяет избежать проблем, характерных для стандартного расположения кремниевой пластины в донной части кюветы, связанных с уплотнением пластины кремния, во избежание протечек электролита, содержащего агрессивную плавиковую кислоту. Травление проводится в режиме постоянного тока при плотности 50-75 мА/см2. Время травления можно варьировать от 5 до 30 мин, что позволяет изменять толщину пористого слоя в пределах от 50 до 300 нм с размерами пор менее 3 нанометров.
При увеличении времени травления свыше 30 минут резко падает плотность тока через пластину и эффективность травления существенно снижается. Возможен сильный перегрев и закипание раствора электрохимического травления, что обычно приводит к значительному снижению качества (увеличение шероховатости и степени загрязнения продуктами раствора ЭХТ) поверхности получаемых образцов.
На втором этапе методом ионно-плазменного распыления на слой пористого кремния наносится пленка Al2O3. Для этого производится бомбардировка мишени из алюминия марки А-999 ионами кислорода в плазме особо чистого (99,999) кислорода без специального добавления аргона. Рабочее давление варьируется в диапазоне 3-5⋅10-3 мм рт.ст. Подложка образца за время процесса напыления разогревается до (200-250)°C. Используются сравнительно невысокие для подобных процессов потенциалы мишени - 400-600B, что позволяет добиваться практически 100% окисления атомов распыляемого алюминия в рабочем объеме камеры до подлета их до образца. Скорость роста пленки Al2O3 составляет 20-40 ангстрем в минуту. Для устойчивости горения кислородной плазмы в процессе напыления производится предварительная подготовка оснастки рабочей камеры установки. Перед каждым процессом производится запыление всей оснастки камеры (включая держатель образца) алюминием посредством распыления алюминиевой мишени в плазме аргона. В противном случае происходит загрязнение напыляемой пленки Al2O3 осколками от микровзрывов диэлектрической пленки окиси алюминия, осажденной на подложкодержателе от предыдущих процессов.
В процессе формирования пленки происходит рост оксида алюминия на поверхности слоя пористого кремния в виде ориентированных в одном направлении нанонитей высотой 80-100 нм, расположенных на поверхности на расстоянии 300-500 нм друг от друга (фиг. 2). Такой механизм роста задается кристаллографической ориентацией исходной пластины монокристаллического кремния, используемой для создания пористого слоя, методом и условиями создания пористого слоя, а также способом формирования пленки Al2O3 методом ионно-плазменного распыления.
Сформированные на поверхности гетерофазной структуры наноразмерные структурированные нити Al2O3 могут служить оптическими проводящими каналами и достаточно эффективно внедрены в стандартные технологии микро и оптоэлектроники.
название | год | авторы | номер документа |
---|---|---|---|
МАТРИЧНЫЙ АВТОЭМИССИОННЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2017 |
|
RU2666784C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУР ПОЛУПРОВОДНИКА | 2008 |
|
RU2385835C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВОЙ НАНОСТРУКТУРЫ | 2011 |
|
RU2460166C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОПРОНИЦАЕМОЙ МЕМБРАНЫ И ГАЗОПРОНИЦАЕМАЯ МЕМБРАНА | 2007 |
|
RU2335334C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ НАНОРАЗМЕРНЫХ НИТЕЙ В ВИДЕ РАЗВЕТВЛЕННЫХ ПУЧКОВ ИЗ ТУГОПЛАВКОГО МЕТАЛЛА | 2017 |
|
RU2678859C1 |
НАНОРАЗМЕРНАЯ СТРУКТУРА С КВАЗИОДНОМЕРНЫМИ ПРОВОДЯЩИМИ НИТЯМИ ОЛОВА В РЕШЕТКЕ GaAs | 2012 |
|
RU2520538C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОГО АНОДА ЛИТИЙ-ИОННЫХ АККУМУЛЯТОРОВ НА ОСНОВЕ ПЛЕНОК НАНОСТРУКТУРИРОВАННОГО КРЕМНИЯ, ПОКРЫТОГО ДВУОКИСЬЮ КРЕМНИЯ | 2011 |
|
RU2474011C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КРЕМНИЕВОГО ЧУВСТВИТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ЛЮМИНЕСЦЕНТНОГО НАНОСЕНСОРА КИСЛОРОДА | 2013 |
|
RU2539120C1 |
Наноразмерная структура с профилем легирования в виде нанонитей из атомов олова | 2016 |
|
RU2650576C2 |
СПОСОБ ПОЛУЧЕНИЯ АНОДНОГО ОКСИДА АЛЮМИНИЯ С ВЫСОКОУПОРЯДОЧЕННОЙ ПОРИСТОЙ СТРУКТУРОЙ И СПОСОБ ФОРМИРОВАНИЯ МАССИВОВ АНИЗОТРОПНЫХ НАНОСТРУКТУР НА ЕГО ОСНОВЕ | 2010 |
|
RU2555366C2 |
Использование: для роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников. Сущность изобретения заключается в том, что пленку Al2O3 наносят ионно-плазменным распылением на слой пористого кремния с размером пор менее 3 нм, полученного электрохимическим травлением исходной пластины монокристаллического кремния, при рабочем давлении в камере в диапазоне 3-5⋅10-3 мм рт.ст. и потенциале мишени - 400-600 В. Технический результат: обеспечение возможности создания эффективного способа изготовления нанопрофилированной ультратонкой пленки диоксида алюминия на поверхности пористого кремния. 1 з.п. ф-лы, 2 ил.
1. Способ получения нанопрофилированной ультратонкой пленки Al2O3 на поверхности пористого кремния, заключающийся в ионно-плазменном распылении пленки Al2O3 на слое пористого кремния с размером пор менее 3 нм, полученного электрохимическим травлением исходной пластины монокристаллического кремния, при рабочем давлении в камере в диапазоне 3-5⋅10-3 мм рт.ст. и потенциале мишени - 400-600 В.
2. Способ по п. 1, отличающийся тем, что механизм роста пленки задается кристаллографической ориентацией исходной пластины монокристаллического кремния, методом и условиями создания пористого слоя, а также способом формирования пленки Al2O3 методом ионно-плазменного распыления.
П.В | |||
Середин, Д.Л | |||
Голощапов, А.Н | |||
Лукин, А.С | |||
Леньшин, А.Д | |||
Бондарев, И.Н | |||
Арсентьев, Л.С | |||
Вавилова, И.С | |||
Тарасов, Структура и оптические свойства тонких пленок Al 2 O 3 , полученных методом реактивного ионно-плазменного распыления на подложках GaAs (100), Физика и техника полупроводников, том 48, вып | |||
Походная разборная печь для варки пищи и печения хлеба | 1920 |
|
SU11A1 |
Калильная головка для двухтактных двигателей | 1924 |
|
SU1564A1 |
СПОСОБ ОСАЖДЕНИЯ НАНОРАЗМЕРНОЙ ПЛЕНКИ АЛЬФА-AlO (0001) НА МЕТАЛЛИЧЕСКИЕ ПОДЛОЖКИ | 2012 |
|
RU2516366C2 |
RU 2059322 C1, 27.04.1996 | |||
СПОСОБ ИМПУЛЬСНО-ЛАЗЕРНОГО ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК МАТЕРИАЛОВ С ВЫСОКОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТЬЮ | 2004 |
|
RU2306631C2 |
US 6524918 B2, 25.02.2003. |
Авторы
Даты
2017-10-25—Публикация
2015-12-01—Подача