Изобретение относится к машиностроению, а именно: к робототехнике и может быть использовано при создании мехатронно-модульных роботов.
Одним из важнейших и перспективных направлений развития современной робототехники связано с разработкой нового класса устройств - многозвенных мехатронно-модульных роботов с адаптивной структурой. Структурный синтез при проектировании реконфигурируемых мехатронно-модульных роботов рассматривается как одновременное, автоматизированное решение двух задач выбора: порядка блочно- модульной сборки и варианта настройки априорно периодического закона изменения обобщенных координат (y, z), определяющего алгоритм управления движением.
Известен способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов, заключающийся в проведении синтеза структуры многоинвариантной модели мехатронно-модульных роботов и последующей фиксации полученных оптимальных решений (И.М. Макаров, В.М. Лохин, С.В. Манько, М.П. Романов, М.В. Кадочников. ИТ, ″Технологии обработки знаний в задачах управления автономными мехатронно-модульными реконфигурируемыми роботами″, приложение к ″Информационные технологии″ №8, М., ″Новые технологии″, 2010, стр.3-7, рис.14 -прототип).
Указанный способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов заключается в создании конкретных модулей и запоминании конкретных положений отдельных модулей для решения целевых задач.
Недостатками данного способа является его значительная сложность, низкая эффективность ориентации в окружающей среде реконфигурируемых мехатронных устройств, преимущественно мехатронно-модульных роботов.
Задачей предложенного технического решения является устранение указанных недостатков и создание мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысит эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов.
Решение поставленной задачи достигается тем, что предложенный мехатронно-модульный робот, согласно изобретению, состоит как минимум из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно, первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом количество модулей, объединяемых в упомянутый робот, определено из соотношения n=1, N, где n - количество модулей, объединяемых в один робот, определено из соотношения n=1+x1+2x2+4x3+8x4, где x1,x4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:
Angle=А+В sin(ωt+φ),
где A - значение обобщенной координаты, относительно которой происходит периодическое движение; B - амплитуда периодического колебания обобщенной координаты, причем суммарная величина
В варианте исполнения, что для оптимизационного структурного синтеза, выбраны значения альтернативных переменных
при ограничениях n=1, N
где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
Предложенный мехатронно-модульный робот может быть создан следующим образом.
Рассматривают множество проектных элементов и вводят соответствующие альтернативные переменные путем представления дискретных чисел, соответствующих этим элементам, в двоичном исчислении.
Обозначают количество модулей 2 и 3, объединяемых в один мехатронно-модульный робот 1, без четко выраженной структуры,
При блочно-модульной сборке робота 1 полагают, что сопряжение каждого нового модуля с ранее собранными осуществляется вдоль выбранного направления и обеспечивается стыковкой его первой свободной интерфейсной площадки 4 с одной из свободных аналогичных интерфейсных площадок 4 на любых других модулях 3 как элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду.
Выделяют этот алгоритм преимущественно как Асб. Описание порядка сборки приводят к указанию направления и места крепления очередного элемента с использованием алгоритма Асб.
В направлении для стыковки n-го модуля ncм принимают четыре значения: ncm=1 - север, ncm=2 - восток, ncm=3 - юг, ncm=4 - запад и представляют через альтернативные переменные:
Номер площадки, выбираемой для стыковки n-го модуля в двоичном исчислении, записывают в следующем виде:
Альтернативные переменные для описания параметров периодического закона вводят следующим образом:
Angle=А+В sin(ωt+φ),
где A - значение обобщенной координаты, относительно которой происходит периодическое движение;
B - амплитуда периодического колебания обобщенной координаты; суммарная величина
φ - смещение фазы периодического движения.
Настройкой параметров этого закона определяют алгоритмы управления, синтезируемой мехатронно-модульной конструкцией. Указанные параметры характеризуются дискретными значениями, имеющими соответствующие численные номера в пределах N≤16.
Затем для оптимизационного структурного синтеза выбирают значения альтернативных переменных
при ограничениях N=1, N
где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
Для нахождения максимального значения функции fдачи, используют рандомизированной алгоритм многоальтернативной оптимизации, который дополняют еще одним уровнем в рамках управляемого роя частиц.
Для синхронизации процедуры метода роя частиц и вариационной процедуры многоальтернативной оптимизации на каждом шаге управляют выбором частицы для обновления скорости изменения координат, которую осуществляют с использованием рандомизированной схемы. С этой целью вводят случайную дискретную величину m, которая принимает значение m=1, М с вероятностью pn. На первом шаге получают:
Далее изменение значений
а значение вероятностей pn:
При этом величина ε>0 определяет степень рекордности движения ν-й частицы в направлении к экстремуму оптимизируемой функции.
Сущность изобретения иллюстрируется чертежами, где на фиг.1 показаны отдельные мехатронно-модульные роботы со свободными интерфейсными площадками, на фиг.2 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам, и образующий фигуру в виде многоугольника, на фиг.3 - мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам и образующий фигуру в виде квадрата, на фиг.4- мехатронно-модульный робот, состоящий из нескольких модулей, соединенных между собой по свободным интерфейсным площадкам, и образующий фигуру в виде прямоугольника.
Мехатронно-модульный робот 1 состоит как минимум из двух сопряженных между собой модулей первичного 2 и вторичного 3. Один из двух сопрягаемых между собой модулей, преимущественно первичный 2, является управляющим по отношению к другому, вторичному 3, с ним стыкуемым, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота. Сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой свободной интерфейсной площадки 4 с одной из свободных аналогичных площадок 4 на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. Несвободная интерфейсная площадка 5 образована за счет стыковки между собой двух свободных интерфейсных площадок 4.
Предложенный мехатронно-модульный робот функционирует следующим образом.
Произвольно выбирается управляющий первичный модуль 2 со свободной интерфейсной площадкой 4 и стыкуется с любым произвольно выбранным вторичным модулем 3 с аналогичной свободной интерфейсной площадкой 4. При стыковке между собой двух свободных интерфейсных площадок 4 образуется несвободная интерфейсная площадка 5. Дальнейшее присоединение свободных модулей 3 к образованному модулю, состоящему из двух первоначально соединенных между собой управляющего модуля 2 и вторичного 3, происходит вдоль выбранного направления с образованием требуемой конечной структуры мехатронно-модульного робота.
Использование предложенного технического решения позволит проводить синтез структуры многоинвариантной модели мехатронно-модульных роботов с последующим фиксированием полученных оптимальных решений с последующим повышением количества возможных итераций мехатронно-модульного робота при значительном сокращении времени синтеза.
Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысить эффективность ориентации в окружающей среде и надежность работы создаваемых мехатронных устройств, преимущественно мехатронно-модульных роботов. Мехатронно-модульный робот состоит как минимум из двух сопряженных между собой модулей, предпочтительно двух и более, первичного и вновь с ним сопрягаемого/ых, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/им, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду. 1 з.п. ф-лы, 4 ил.
1. Мехатронно-модульный робот, характеризующийся тем, что он состоит как минимум из двух сопряженных между собой модулей, первичного и вновь с ним сопрягаемого/ых вторичного/ых, имеющих интерфейсные площадки для стыковки, при этом один из двух сопрягаемых между собой модулей, преимущественно первичный, является управляющим по отношению к другому/им, вторичному/ым, с ним стыкуемому/ым, причем указанная иерархия в структуре мехатронно-модульного робота соблюдается при последующем сопряжении модулей до формирования окончательной структуры мехатронно-модульного робота, при этом количество модулей, объединяемых в упомянутый робот, определено из соотношения n=l,N, где n - количество модулей, объединяемых в один робот, определено из соотношения n=l+x1+2x2+4x3+8x4, где x1,х4=1,0 - количество интерфейсных площадок на модуле, N≤16 - предельное количество модулей, которые могут быть объединены в один робот, при этом сопряжение каждого нового модуля с ранее собранным/и осуществлено вдоль выбранного направления и обеспечено стыковкой его первой интерфейсной площадки с одной из свободных на любых других элементах конструкции, занимающих ближайшее крайнее положение в том или ином ряду, причем интерфейсные площадки каждого модуля выполнены с возможностью стыковки с аналогичными площадками, по крайней мере, в четырех диаметрально противоположных направлениях, при этом альтернативные переменные для алгоритмов управления синтезированной мехатронно-модульной конструкцией для описания параметров периодического закона движения выбраны из следующего соотношения:
где A - значение обобщенной координаты, относительно которой происходит периодическое движение; В - амплитуда периодического колебания обобщенной координаты, причем суммарная величина |A|+|B| не превышает максимально допустимого отклонения обобщенной координаты модуля; φ - смещение фазы периодического движения.
2. Мехатронно-модульный робот по п. 1, отличающийся тем, что для оптимизации структурного синтеза использована функция f - рандомизированного алгоритма многоальтернативной оптимизации с выбором значений альтернативных переменных обеспечивающих максимальное значение функции:
при ограничениях n=1,N
где ymax, zmax - максимально допустимые отклонения обобщенной координаты модуля относительно ее нулевого значения.
МОБИЛЬНАЯ РОБОТОТЕХНИЧЕСКАЯ СИСТЕМА С НЕСКОЛЬКИМИ СМЕННЫМИ РАБОЧИМИ МОДУЛЯМИ И СПОСОБ УПРАВЛЕНИЯ ЭТОЙ СИСТЕМОЙ | 2006 |
|
RU2313442C1 |
Промышленный робот | 1987 |
|
SU1548032A1 |
Промышленный робот модульного типа | 1983 |
|
SU1158344A1 |
Топчак-трактор для канатной вспашки | 1923 |
|
SU2002A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
2016-01-10—Публикация
2013-02-12—Подача