ПОТОЧНЫЙ АНАЛИЗАТОР СЕРЫ Российский патент 2016 года по МПК G01N23/83 

Описание патента на изобретение RU2573667C1

Изобретение относится к средствам измерения содержания серы в углеводородных жидкостях на основе поглощения рентгеновского излучения веществом, а именно к рентгеноабсорбционным анализаторам серы в нефти и нефтепродуктах, и может быть использовано непосредственно в технологических трубопроводах на потоке.

Ионизирующее излучение поглощается как серой, так и углеводородами нефти (нефтепродуктов), в которых соотношение содержания углерода и водорода С/Н может варьироваться в широких пределах. Поглощающая способность углерода и водорода различны, из-за чего на поглощение излучения в нефти (нефтепродуктах) будет влиять не только искомое содержание серы, но и соотношение С/Н. В результате на погрешность измерения содержания серы будет влиять неконтролируемый состав углеводородной матрицы - соотношение С/Н, которое постоянно изменяется.

Известно, что при энергии ионизирующего излучения, близкой к 22,8 кэВ, значение массового коэффициента µ поглощения в углеводородной матрице практически не зависит от соотношения С/Н.

Известен рентгеноабсорбционный анализатор серы в нефти и жидких нефтепродуктах, включающий источник излучения - радиоактивный изотоп - кадмий-109, измерительную кювету, последовательно соединенные пропорциональный рентгеновский счетчик, блок детектирования, амплитудный дискриминатор, а также блок питания, SU 16898117 A1, опубл. 07.11.1991. В спектре излучения данного источника содержится линия с энергией E=22,3 кэВ.

Недостатками данного технического решения, так же как и других устройств, в которых в качестве источника излучения используются радиоактивные изотопы, являются:

- необходимость использования специальных средств и соблюдения установленных норм при транспортировке, хранении и использовании радиоактивных веществ;

- относительно низкая интенсивность излучения радиоактивного изотопа, что снижает скважность измерений, поскольку необходимо увеличение времени экспозиции для набора статистических данных, так как измерение концентрации серы производится на потоке; большое время экспозиции приводит к потере достоверности измерения;

- необходимость учета постоянного снижения активности радионуклидного источника из-за его распада.

Известен поточный анализатор серы, содержащий рентгеновскую трубку, измерительную кювету, детектор рентгеновского излучения, между рентгеновской трубкой и измерительной кюветой размещены последовательно, одна за другой, две мишени. Перед измерительной кюветой и перед детектором установлены коллиматоры, формирующие параллельные пучки излучения. В качестве первой мишени использована сурьма, в качестве второй мишени - серебро. На первой мишени излучение рентгеновской трубки рассеивается и возбуждает флуоресценцию сурьмы с энергией 26 кэВ. Данное излучение попадает на вторую мишень и возбуждает флуоресценцию серебра с энергией 22 кэВ, RU 53017 U1, опубл. 27.04.2006.

Недостатком данного технического решения являются весьма большие потери интенсивности излучения на мишенях, в 1000 и более раз на каждой мишени, в результате переизлучения. Кроме того, существенная часть излучения теряется на коллиматорах. В результате потерь интенсивности излучения требуется увеличение времени экспозиции, что приводит к снижению скважности измерений и, в конечном итоге, к потере достоверности результатов.

Известен поточный анализатор серы, содержащий рентгеновскую трубку, измерительную кювету и детектор рентгеновского излучения; между рентгеновской трубкой и измерительной кюветой размещена мишень, выполненная из двух материалов - серебра и элемента с атомными номерами от 42 до 57; перед измерительной кюветой и детектором расположены коллиматоры, RU 2367933 C1, опубл. 20.09.2009.

Данное техническое решение принято в качестве прототипа настоящего изобретения.

Указанному устройству свойственны те же недостатки, что и поточному анализатору согласно RU 53017 - значительные потери излучения на мишени (в 1000 и более раз), а также на двух коллиматорах. В общем интенсивность излучения снижается не менее чем в 5000-10000 раз. В результате имеет место существенное снижение скважности измерений ввиду увеличения времени экспозиции и, соответственно, потеря достоверности измерений.

Задачей настоящего изобретения является снижение потерь интенсивности излучения при его поступлении от рентгеновской трубки на детектор и, соответственно, снижение времени экспозиции и увеличение скважности измерений.

Согласно изобретению в поточном анализаторе серы, содержащем рентгеновскую трубку, измерительную кювету и детектор рентгеновского излучения, между рентгеновской трубкой и измерительной кюветой установлен фильтр, выполненный из фольги, материал которой выбран из металлов с атомными номерами с 42 по 49, при этом минимальная толщина bmin фильтра составляет не менее 50 мкм, а максимальная толщина bmax фильтра определяется из условия I 0 I 1 < 200 на 1 Вт мощности рентгеновской трубки, где

Ι0 - интенсивность излучения рентгеновской трубки,

Ι1 - интенсивность излучения, прошедшего через фильтр;

фильтр может быть выполнен из нескольких слоев фольги.

Заявителем не выявлены какие-либо технические решения, идентичные заявленному, что позволяет сделать вывод о соответствии изобретения условию патентоспособности «Новизна».

Поточный анализатор серы содержит рентгеновскую трубку 1, измерительную кювету 2 и детектор 3 рентгеновского излучения. Между рентгеновской трубкой 1 и измерительной кюветой 2 в корпусе 4 установлен фильтр 5, выполненный из фольги. Материал фольги выбран из металлов с атомными номерами с 42 по 49, так как:

- энергия характеристических линий К-серии и К-краев поглощения этих элементов находится вблизи требуемого диапазона 22-24 кэВ;

- указанные металлы химически пассивны в атмосфере;

- получение тонкой фольги из данных металлов технологически доступно. При использовании металлов с атомными номерами меньше 42 и больше 49 энергия характеристических линий К-серии и К-краев поглощения выходит за рамки требуемого диапазона 22-24 кэВ.

Минимальная толщина bmin фильтра должна составлять не менее 50 мкм, в ином случае не обеспечивается удовлетворительный спектральный состав излучения, прошедшего через фильтр.

Максимальная толщина bmax фильтра определяется из условия I 0 I 1 < 200 на 1 Вт мощности рентгеновской трубки, где

Ι0 - интенсивность излучения рентгеновской трубки,

Ι1 - интенсивность излучения, прошедшего через фильтр.

Использование мощных рентгеновских трубок (наибольшая мощность современных трубок достигает 5 кВт) позволяет увеличить толщину фильтра. Однако применение таких мощных рентгеновских трубок в поточном анализаторе серы совершенно нецелесообразно, поскольку в этом случае потребуется специальная система водяного охлаждения, система биологической защиты от мощного излучения, сложная система управления и т.д. Для поточного анализатора целесообразно применение рентгеновских трубок мощностью не более 3-5 Вт. В этом случае максимальная толщина bmax фильтра должна обеспечивать значение I1, при котором I 0 I 1 < 600 1000 , что достаточно для достижения требуемой скважности измерений. При этом bmax составит 1200-1600 мкм.

В конкретном примере использована рентгеновская трубка 1 типа БХ-7 производства ОАО «Светлана», Санкт-Петербург, Россия с серебряным анодом, сцинтилляционный детектор 3 рентгеновского излучения. Фильтр 5 может быть выполнен из нескольких слоев фольги, что позволяет сформировать спектральный состав отфильтрованного излучением таким образом, чтобы ширина спектрального распределения была минимальной (псевдомонохроматизация) и его эффективная энергия находилась максимально близко к интересующему значению - 22,8 кэВ, сохраняя при этом приемлемую интенсивность регистрируемого детектором излучения при заданной мощности рентгеновской трубки.

Устройство работает следующим образом.

Возникающее на аноде рентгеновской трубки 1 характеристическое и тормозное излучение проходит через фильтр 5, слой нефти (нефтепродукта) в кювете 2 и регистрируется детектором 3 рентгеновского излучения. Фильтр 5 формирует спектральный состав излучения I0, поступающего от рентгеновской трубки 1, так, чтобы эффективная энергия прошедшего через него излучения составляла величину, близкую к 22,8 кэВ. Такая «псевдомонохроматизация» необходима для устранения эффекта переменного соотношения С/Н углеводородов нефти (нефтепродуктов). Поглощение псевдомонохроматизированного излучения будет зависеть, главным образом, только от содержания серы в нефти - основном поглощающем компоненте. Зарегистрированная с помощью детектора 3 интенсивность 12 излучения, прошедшего через кювету 2, позволяет вычислить содержание серы по формуле:

где CS - содержание серы в анализируемом продукте;

ρ - плотность пробы, г/см3;

К1, К2 - калибровочные коэффициенты, значение которых определяется из градуировочных измерений с использованием стандартных образцов с известным содержанием серы;

I1 - интенсивность излучения, прошедшего через фильтр;

I2 - интенсивность излучения, прошедшего через кювету;

Iф - интенсивность фонового излучения.

Реализация отличительных признаков изобретения обеспечивает технический результат, состоящий в значительном снижении потерь интенсивности излучения при его поступлении от рентгеновской трубки на детектор рентгеновского излучения. Это позволяет существенно уменьшить время экспозиции, соответственно, увеличить скважность измерений и достоверность их результатов.

Заявителем не выявлены источники информации, в которых содержались бы сведения о влиянии отличительных признаков изобретения на достигаемый технический результат.

Указанные обстоятельства позволяют сделать вывод о соответствии заявленного технического решения условию патентоспособности «Изобретательский уровень».

Опытные образцы устройства изготовлены и испытаны в ООО «Научно-производственное объединение «СПЕКТРОН», г. Санкт-Петербург, Россия, что, по мнению заявителя, позволяет сделать вывод о соответствии заявленного технического решения условию патентоспособности «Промышленная применимость».

Похожие патенты RU2573667C1

название год авторы номер документа
Способ непрерывного измерения массовой доли примесей и поточный анализатор примесей в нефти и нефтепродуктах 2021
  • Букин Кирилл Викторович
RU2756414C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СЕРЫ В НЕФТИ И НЕФТЕПРОДУКТАХ 2008
  • Стрежнева Татьяна Николаевна
  • Лобова Анна Алексеевна
  • Антропов Николай Андреевич
  • Крючков Юрий Юрьевич
  • Боярко Евгений Юрьевич
  • Чернов Иван Петрович
RU2367933C1
УСТРОЙСТВО И СПОСОБ ОПРЕДЕЛЕНИЯ ФРАКЦИЙ ФАЗ ТЕКУЧЕЙ СРЕДЫ С ИСПОЛЬЗОВАНИЕМ РЕНТГЕНОВСКИХ ЛУЧЕЙ, ОПТИМИЗИРОВАННЫЙ ДЛЯ НЕОСУШЕННОГО ГАЗА 2008
  • Гроувз Джоэл Л.
  • Валле Этьенн
  • Рейт Питер
RU2479835C2
ИЗМЕРИТЕЛЬНАЯ КЮВЕТА ПОТОЧНОГО АНАЛИЗАТОРА СЕРЫ В НЕФТИ И НЕФТЕПРОДУКТАХ 2014
  • Ходжаев Зиёвуддин Бахтиярович
  • Киселев Павел Петрович
RU2573669C1
УСТРОЙСТВО ДЛЯ ЭНЕРГОДИСПЕРСИОННОГО РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА НА ОСНОВЕ ВТОРИЧНЫХ ИЗЛУЧАТЕЛЕЙ 2014
  • Яфясов Адиль Абдул Меликович
  • Калинин Борис Дмитриевич
  • Плотников Роберт Исаакович
RU2584066C1
РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ АНАЛИЗАТОР КОМПОНЕНТНОГО СОСТАВА И СКОРОСТНЫХ ПАРАМЕТРОВ ГАЗОЖИДКОСТНОГО ПОТОКА 2008
  • Фурмаков Евгений Федорович
  • Петров Олег Федорович
  • Маслов Юрий Викторович
  • Новиков Андрей Юрьевич
RU2379663C1
РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ АНАЛИЗАТОР СОСТАВА И СКОРОСТИ ТРЕХКОМПОНЕНТНОГО ПОТОКА 2008
  • Фурмаков Евгений Федорович
  • Петров Олег Федорович
  • Маслов Юрий Викторович
  • Новиков Андрей Юрьевич
RU2379658C1
Способ и устройство для скоростного исследования протяженных объектов, находящихся в движении, с помощью частотных импульсных источников рентгеновского излучения и электронных приемников излучения 2019
  • Дворцов Михаил Алексеевич
  • Комарский Александр Александрович
  • Корженевский Сергей Романович
  • Корженевский Никита Сергеевич
RU2720535C1
РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ АНАЛИЗАТОР КОМПОНЕНТНОГО СОСТАВА И ПОКОМПОНЕНТНОГО РАСХОДА ТРЕХКОМПОНЕНТНОГО ПОТОКА 2008
  • Фурмаков Евгений Федорович
  • Петров Олег Федорович
  • Маслов Юрий Викторович
  • Новиков Андрей Юрьевич
  • Петров Виктор Михайлович
RU2379662C1
РЕНТГЕНОФЛУОРЕСЦЕНТНЫЙ АНАЛИЗАТОР КОМПОНЕНТНОГО СОСТАВА И ПОКОМПОНЕНТНОГО РАСХОДА ГАЗОЖИДКОСТНОГО ПОТОКА 2008
  • Фурмаков Евгений Федорович
  • Петров Олег Федорович
  • Маслов Юрий Викторович
  • Новиков Андрей Юрьевич
  • Петров Виктор Михайлович
RU2379657C1

Реферат патента 2016 года ПОТОЧНЫЙ АНАЛИЗАТОР СЕРЫ

Использование: для измерения содержания серы в углеводородных жидкостях. Сущность изобретения заключается в том, что поточный анализатор серы содержит рентгеновскую трубку, измерительную кювету и детектор рентгеновского излучения, при этом между рентгеновской трубкой и измерительной кюветой установлен фильтр, выполненный из фольги, материал которой выбран из металлов с атомными номерами с 42 по 49, причем минимальная толщина bmin фильтра составляет не менее 50 мкм, а максимальная толщина bmax фильтра определяется из условия на 1 Вт мощности рентгеновской трубки, где I0 - интенсивность излучения рентгеновской трубки, I1 - интенсивность излучения, прошедшего через фильтр. Технический результат: обеспечение возможности снижения потерь интенсивности излучения при его поступлении от рентгеновской трубки на детектор и, соответственно, снижение времени экспозиции и увеличение скважности измерений. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 573 667 C1

1. Поточный анализатор серы, содержащий рентгеновскую трубку, измерительную кювету и детектор рентгеновского излучения, отличающийся тем, что между рентгеновской трубкой и измерительной кюветой установлен фильтр, выполненный из фольги, материал которой выбран из металлов с атомными номерами с 42 по 49, при этом минимальная толщина bmin фильтра составляет не менее 50 мкм, а максимальная толщина bmax фильтра определяется из условия на 1 Вт мощности рентгеновской трубки, где
I0 - интенсивность излучения рентгеновской трубки,
I1 - интенсивность излучения, прошедшего через фильтр.

2. Поточный анализатор серы по п. 1, отличающийся тем, что фильтр выполнен из нескольких слоев фольги.

Документы, цитированные в отчете о поиске Патент 2016 года RU2573667C1

УСТРОЙСТВО для АВТОМАТИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СЕРЫ В ПОТОКЕ НЕФТЕПРОДУКТОВ 0
  • А. М. Дробиз, Ю. Г. Хачатуров, Р. Б. Золотарев, Н. Салахов,
  • В. В. Чернецов, Г. С. Грицевский, В. Ю. Розанов, Я. С. Погул Евский
  • В. С. Дергачёв
SU351464A1
Устройство для синхронизирования генератора с сетью 1936
  • Иконников С.Н.
SU53017A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СЕРЫ В НЕФТИ И НЕФТЕПРОДУКТАХ 2008
  • Стрежнева Татьяна Николаевна
  • Лобова Анна Алексеевна
  • Антропов Николай Андреевич
  • Крючков Юрий Юрьевич
  • Боярко Евгений Юрьевич
  • Чернов Иван Петрович
RU2367933C1
JPH 07063706A, 10.03.1995
JP 63202695A, 22.08.1988
Многоканальная матрица 1978
  • Хохряков Геральд Николаевич
  • Щербанюк Виктор Лукьянович
  • Александрова Римма Васильевна
  • Фирсов Виктор Павлович
  • Яновский Владимир Всеволодович
SU774659A2

RU 2 573 667 C1

Авторы

Ходжаев Зиёвуддин Бахтиярович

Киселев Павел Петрович

Даты

2016-01-27Публикация

2014-12-10Подача