НАБОР СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ ДЛЯ ВЫЯВЛЕНИЯ РНК ВИРУСА БЕШЕНСТВА И СПОСОБ ВЫЯВЛЕНИЯ РНК ВИРУСА БЕШЕНСТВА С ПОМОЩЬЮ СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ В ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ С ОБРАТНОЙ ТРАНСКРИПЦИЕЙ (ОТ-ПЦР) Российский патент 2016 года по МПК C12Q1/68 C12N15/11 

Описание патента на изобретение RU2575088C1

Изобретение относится к области биотехнологии, в частности к генетической инженерии, и может быть использовано в ветеринарии и медицине для выявления генетического материала вируса бешенства в полевых и клинических образцах.

Изобретение представляет собой продукт химического синтеза олигодезоксирибонуклеотидной природы, предназначенный для индикации РНК лиссавирусов в патологическом и клиническом материале. При помощи этого набора диагностических праймеров возможно экспресс-определение наличия генетического материала вирусов бешенства, принадлежащих к генотипу 1.

Бешенство - острое инфекционное заболевание центральной нервной системы, поражающее всех теплокровных, включая и человека. Это заболевание вызывается вирусом бешенства (Rabies virus). Представителем рода Lyssavirus, семейства Rhabdoviridae. Род Lyssavirus объединяет семь генотипов. Генотип 1 представлен классическими штаммами вируса бешенства (rabies viras), которые циркулируют во всем мире. Генотипы 2-7 включают лиссаподобные rabies-related (non-rabies) вирусы: Lagos bat virus (генотип 2), Mokola virus (генотип 3), Davenhage virus (генотип 4), European bat lyssavirus 1 (EBLV1) и 2 (EBLV2) (генотипы 5 и 6 соответственно) и Australian bat lyssavirus (ABL) (генотип 7). Вирус бешенства (генотип 1) поддерживается в природе межвидовой передачей практически повсеместно (кроме Австралии и некоторых островов) среди представителей Carnivora и Microchiroptera.

Геном представлен единой 1-спиральной линейной молекулой минус-РНК, состоит из 11932 нуклеотидов. Вирионная РНК рабдовирусов не обладает инфекционностью. В вирионах рабдовирусов обнаружено 5 полипептидов (гликопротеин, матриксный белок М, нуклеопротеин N, фосфопротеин NS, обратная транскриптаза L (РНК-зависимая РНК-полимераза)), 3 из которых (L,N,S,N) связаны с нуклеокапсидом, а 2 (G,M) входят в состав липопротеидной оболочки. Белок G гликолизирован, образует на поверхности вириона выступы, индуцирует синтез вируснейтрализующих антител и обеспечивает развитие иммунитета. Белки нуклеокапсида N и NS имеют группоспецифические антигенные детерминанты. Белки нуклеокапсида L и NS являются компонентами транскриптазы. Гены расположены в следующем порядке: 3′-N-NS-M-G-L-5′ (Tordo Ν., Poch О., Ermine Α., Keith. G., Rougeon F. Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology. 1988:165 (2). 565-76; Tordo, N., Poch, O., Ermine, A., Keith, G. and Rougeon, F. Walking along the rabies genome: is the large G-L intergenic region a remnant gene? Proc. Natl. Acad. Sci. U.S.A. 1986: 83 (11), 3914-18; Tordo Ν., Roch О. Structure of rabies virus. Rabies. Boston: Kluwer Academic Publishers. 1988: 25-45; Tordo Ν., Sacramento D., Bourhy H. The polymerase chain reaction (PCR) technique for diagnosis, typng and epidemiological studies of rabies/ In: Kaplan M.M., Koprowski H., Meslin F.-X. Laboratory techniques in rabies Eds.WHO. Geneva. 1996:157-70) [1-4]·

До настоящего времени наиболее чувствительным и достоверным методом диагностики бешенства в России является классическая биопроба на белых мышах с последующей идентификацией антигена вируса бешенства методом флуоресцирующих антител (МФА) (Государственный стандарт СССР 26075. Животные сельскохозяйственные. Методы лабораторной диагностики бешенства. Введ. 9.01.1984. М.: Государственный комитет СССР по стандартам; 1984) [5].

Недостатками биопробы являются продолжительность исследования (в отрицательных случаях до 30 суток), потенциальная опасность выноса возбудителя болезни, а также невозможность исследования разложившегося материала. Кроме того, постановка биопробы неэкономична, требует особого виварного помещения и обслуживающего персонала (Хисматуллина Н.А., Юсупов Р.Х., Селимов М.А., Янбарисова С.Р. Разработка экспресс-методов иммунологического мониторинга при бешенстве. Вопросы вирусологии. 2001; 5:45-8) [6].

Известен диагностический набор праймеров на консервативную область гена нуклеопротеина фиксированного штамма вируса бешенства CVS, циркулирующего на территории Новосибирской области среди диких и домашних животных, в полевых и клинических образцах, имеющих следующую структуру:

Rabl34F 5′-ATCGT(A,G)GA(T,C)CAATATGAGTACAAGTA-3′ (26 п.н.)

Rabl292R 5′-C(A,G,C,T)TCCATTCATGATTCG-3′ (20 п.н.)

Rab299F 5′-GCAATGCAGTTCTTTGAGGG-3′ (20 п.н.)

Rab857R 5′-TATCTCTTCTTCAAAGTTCTT-3′ (21 п.н.) (патент RU №2340673, МПК C12N 15/00, опубл. 10.12.2008 г.) [7].

Однако для более полной характеристики и расширения диапазона исследований эпизоотических изолятов и вакцинных штаммов вируса бешенства необходим дальнейший поиск синтетических олигонуклеотидных праймеров на ген гликопротеина.

Известно, что одним из широко используемых методов детекции РНК вируса бешенства является обратно-транскриптазная цепная реакция (ОТ-ПЦР) (Nadin-Davis S.A., Yuang W., Wandeler A.I. The design of strain-specific polymerase chain reactions for discrimination of theraccon rabies virus strain from indigenous rabies viruses of Ontario. J. Virol. Methods. 1996 Mar; 57 (1): 1-14) [8]. С помощью ПЦР диагноз можно поставить за 5 часов. Кроме того, применение автоматического секвенирования позволяет получить характеристику изолятов в течение 16 часов.

В большинстве случаев ОТ-ПЦР применяют для штаммовой дифференциации вируса бешенства (Nadin-Davis S.A., Yuang W., Wandeler A.I. The design of strain-specific polymerase chain reactions for discrimination of theraccon rabies virus strain from indigenous rabies viruses of Ontario. J. Virol. Methods. 1996 Mar; 57 (1): 1-14; Wakeley P.R., Johnson N., McElhinney L.M. et al. Development of a real-time, TaqMan reverse transcription-PCR assay for detection and differentiation of Lyssavirus genotypes 1,5 and 6. J.Clin.Microbiol.2005; 43(6): 2786-92) [8, 9]. Кроме того, возможно применение ОТ-ПЦР для прижизненного обнаружения вирусной РНК в слюне, спинномозговой жидкости инфицированных животных и в биоптатах слюнной железы (Crepin P., Andru L., Rotivel Y. et al. Intravitam diagnosis of human rabies by PCR using saliva and cerebrospinal fluid. J. Clin. Microbiol. 1998; 36 (4): 1117-21; Nagaraj T. Kumar S., Dudley J., Nei M. Tamura K. MEGA: biologist-centricsoltware for evolutionary analysis of DNA and protein seqvences. http://Brif.Bioinform.2008; 9:299-306; Kumar S., Dudley J., Nei M. Tamura K. MEGA: biologist-centricsoltware for evolutionary analesis of DNA and protein seqvences. http://Brif.Bioinform.2008; 9:299-306) [9- 12].

Наиболее приемлемым с точки зрения описанных недостатков биопробы и принятым за прототип является способ выявления РНК вируса бешенства, основанный на ОТ-ГТДР, включающей выделение РНК вируса из вируссодержащей суспензии, синтез олигонуклеотидных праймеров на ген нуклеопротеина, амплификацию РНК вируса в ОТ-ПЦР, специфическую идентификацию продуктов ОТ-ПЦР с помощью дот-блот анализа (Tordo Ν., Sacramento D., Bourhy Η. The polymerase chain reaction (PCR) technique for diagnosis, typng and epidemiological studies of rabies/ In: Kaplan M.M., Koprowski H., Meslin F.-X. Laboratory techniques in rabies Eds. WHO. Geneva, 1996: 157-70) [4]. В указанной работе способ выделения РНК основан на фенольно-хлороформном методе, позволяющий выделять тотальную РНК без посторонних примесей (фосфолипиды гол. мозга и др.), оказывающие ингибирующее действие на ОТ-ПЦР. Вместе с тем, для выделения высококачественной РНК фенольно-хлорормным методом требуется соблюдение низкотемпературных условий. В то же время часто используемый сорбентный метод выделения РНК прост в исполнении и не требует соблюдения особых температурных условий.

Однако данный метод не позволяет получать качественные нативные образцы РНК. В связи с этим чувствительность одностадийной ОТ-ПЦР значительно снижается. Кроме того, количество вирусного материала в исследуемых образцах может быть ниже детектируемого ПЦР вследствие несоблюдения условий хранения или транспортировки клинического материала и др.

Задача изобретения - расширение арсенала олигонуклеотидных праймеров и способов выявления вируса бешенства.

Поставленная задача решается тем, что в известном способе синтезируются синтетические олигонуклеотидные праймеры для выявления РНК вируса бешенства, отличающиеся тем, что праймеры имеют нуклеотидные последовательности:

Наружные праймеры для первого раунда амплификации:

Название Позиция Ген Последовательность (5′-3)′ fp_850_gp_rabv 4072-4096 G TTAGACTTATGGATGGAACATGGGT rp_850_gp_rabv 4805-4826 G AGTGACTGACACCTCCCTCCCT

Внутренние праймеры для второго раунда амплификации:

Название Позиция Ген Последовательность (5′-3)′ fp_350_gp_rabv 4167-4189 G TCAGACGAAATTGAGCACCTTGT rp_350_gp_rabv 4404-4425 G ACCTCCCCCCAACTCTTAAACA

Задача решается также тем, что в способе выявления РНК вируса бешенства, включающем проведение ОТ-ПЦР с олигонуклеотидными праймерами, согласно изобретению наружные праймеры для первого раунда амплификации имеют нуклеотидные последовательности:

Название Позиция Ген Последовательность (5′-3)′ fp_850_gp_rabv 4072-4096 G TTAGACTTATGGATGGAACATGGGT rp_850_gp_rabv 4805-4826 G AGTGACTGACACCTCCCTCCCT

Внутренние праймеры для второго раунда амплификации имеют следующие последовательности:

Название Позиция Ген Последовательность (5′-3)′ fp_350_gp_rabv 4167-4189 G TCAGACGAAATTGAGCACCTTGT rp_350_gp_rabv 4404-4425 G ACCTCCCCCCAACTCTTAAACA.

Поставленная задача решается также тем, что в способе выявления РНК вируса бешенства, включающем проведение ОТ-ПЦР с олигонуклеотидными параметрами, согласно изобретению, праймеры имеют нуклеотидные последовательности:

fp_850_gp_rabv 5′-TTAGACTTATGGATGGAACATGGGT-3′,

rp_850_gp_rabv 5′-AGTGACTGACACCTCCCTCCCT-3′,

fp_350_gp_rabv 5′-TCAGACGAAATTGAGCACCTTGT-3′,

rp_350_gp_rabv 5′-ACCTCCCCCCAACTCTTAAACA-3′ и синтезированы на консервативный ген гликопротеина, а ОТ-ПЦР проводят в два раунда, при этом в случае положительной реакции синтезируется фрагмент, соответствующий размеру в первом раунде 755 п.н., во втором раунде - 259 п.н.

Изобретение иллюстрируется следующими примерами.

Пример 1. Получение синтетических олигонуклеотидных праймеров.

Конструирование праймеров осуществляют путем сравнения нуклеотидных последовательностей различных штаммов лиссавирусов, депонированных в международной базе данных GeneBank (http:ncbi.nlm.nih.gov/GeneBank/GeneBankSearch.html) при помощи пакета программного обеспечения «Vector NTI 9.1».

Для этого были рассчитаны и синтезированы олигонуклеотидные праймеры на район гена гликопротеина (ЗАО «Синтол»).

Окончательный выбор праймеров основан на следующих критериях: высокий индекс сходства фрагмента и РНК различных штаммов вируса бешенства, высокая температура отжига (GC-метод), большая длина консенсусов. Химический синтез праймеров осуществляют амидофосфидным методом на автоматическом синтезаторе ASM-102U. Концентрацию синтетических олигонуклеотидных праймеров в маточном растворе определяют спектрофотометрическим методом.

Характеристика набора праймеров и участка амплифицируемой геномной РНК. Праймеры фланкируют консервативный участок гена гликопротеина вируса бешенства, кДНК который не имеет полиндромных повторов нуклеотидов и не образует выраженных вторичных структур, не имеет протяженных G-C участков. Для пар праймеров расчетная температура плавления была близкой и составила Tm=58°C.

Таким образом, были выбраны синтетические олигонуклеотидные праймеры, комплементарные консервативной области генома вируса бешенства района гена гликопротеина:

fp_850_gp_rabv 5′-TTAGACTTATGGATGGAACATGGGT-3′,

rp_850_gp_rabv 5′-AGTGACTGACACCTCCCTCCCT-3′,

fp_350_gp_rabv 5′-TCAGACGAAATTGAGCACCTTGT-3′,

rp_350_gp_rabv 5′-АССТССССССААСТСТТАААСА-3′.

Пример 2. Способ выявления РНК вируса бешенства с помощью набора синтетических олигонуклеотидных праймеров в обратно-транскриптазной полимеразной цепной реакции (ОТ-ПЦР).

Способ осуществляется в несколько этапов.

Этап 1. Выделение РНК вируса бешенства.

Обеззараженные в соответствии с ГОСТом 26075 [5] пробы антигена вируса бешенства мозгового происхождения (10%-ные суспензии на физ. растворе) и клинического материала отбирали по 100 мкл. Выделение РНК из образцов головного мозга животных и клинического материала осуществляют стандартным способом с использованием коммерческого набора «РИБО-сорб», производства ФГУН «Центральный НИИ эпидемиологии» Роспотребнадзора, выпускаемый фирмой ООО «ИнтерЛабСервис», Россия.

Этап 2. Проведение реакции обратной транскрипции для получения к-ДНК.

Осуществляют стандартным способом с использованием коммерческого набора «Реверта-L» производства того же института, выпускаемый ООО «ИнтерЛабСервис», Россия.

В пробирку, содержащую 10 мкл реакционной смеси: буфер для ОТ и 6 мкл ревертазы из набора «Реверта-L», добавляют 10 мкл РНК-пробы, осторожно перемешивают и инкубируют в термостате при 37°C в течение 60 минут. Затем добавляют 20 мкл ДНК-буфера, тщательно перемешивают и используют для постановки ОТ-ПЦР.

Этап 3. Амплификация участка к-ДНК вируса бешенства, кодирующего ген гликопротеина.

Полимеразная цепная реакция.

Предварительно готовится ПЦР-смесь-1 и ПЦР-смесь-1а и разливается по 5 мкл в микропробирки объемом 0,6 мл, сверху заливается воском. ПЦР смесь-1 состоит из раствора праймеров в концентрации 1пкмоль/мкл каждого и смеси трифосфатов до конечной концентрации 0,2 тМ каждого. Приготовленные пробирки хранятся при +4°C. В отдельной микропробирке смешивают ПЦР смесь-2 непосредственно перед использованием: 10×ПЦР буфера (60 mM Tris-HCl, 2,5 mM MgCl2, 25 mM KCl, 10 mM 2-меркаптоэтанола, 0,1% Тритон Х-100) из расчета по 1 мкл и по 9 мкл деионизированной стерильной воды на пробу (количество проб + 2 контроля + 1) и добавляют Tag F-ДНК-полимеразу с активностью 5 ед/мкл до конечной концентрации 0,5 ед/мкл.

Отбирают необходимое количество пробирок с ПЦР-смесью-1. На поверхность воска вносится по 10 мкл ПЦР-смеси-2. Сверху добавляется по капле минерального масла для ПЦР (примерно 25 мкл). В подготовленные для ПЦР пробирки под масло или на масло вносят по 10 мкл исследуемых кДНК. Ставят контрольные реакции амплификации: отрицательный контрольный образец - в пробирку вносят 10 мкл ТЕ-буфера; в положительный контрольный образец - в пробирку вносят 10 мкл кДНК рабического вируса.

Температурный режим проведения ОТ-ПЦР. Программа амплификации состоит из температурных режимов, представленных в таблице 1.

Этап 4. Определение размера продуктов диагностической ПНР.

Продукты ОТ-ПЦР анализируют методом электрофореза в 1,7%-ном агарозном геле в стандартном трис-боратном буфере, pH 8,0, по стандартной методике. Результаты электрофореза учитывают, просматривая гель в ультрафиолетовом свете с длиной волны 254 нм на приборе «Трансиллюминатор». Маркер молекулярного веса Fermentas 100-3000 пар оснований.

Результат ОТ-ПЦР считают положительным, если продукт ОТ-ПЦР визуализируется в виде светящегося фрагмента, соответствующего 755 п.н. Проведение 2 этапа амплификации проводят аналогично 1 этапу с применением ПЦР-смеси-1а и в качестве матрицы используют продукты амплификации 1 этапа. Детекцию продуктов ПЦР-амплификации проводят методом электрофореза в агарозном геле аналогично вышеописанному. В положительных пробах визуализируется паттерн 259 п. н.

Пример 3. Определение чувствительности ПЦР.

Для определения чувствительности реакции контрольный вирус бешенства, производственный штамм «Овечий» ГНКИ титруют методом 10-кратных разведений до 107LD50/мл, каждое разведение подвергают исследованию в ПЦР. Чувствительность разработанной ОТ-ПЦР составляет 1,3 lg LD50/мл.

Пример 4. Определение специфичности.

Результаты опытов по определению специфичности реакции представлены в таблице 2.

Из данных таблицы 2 следует, что положительная реакция имеет место в двух раундах предлагаемого способа с применением внешних и внутренних праймеров к гену гликопротеина рабического вируса, с к-ДНК эпизоотических изолятов вируса бешенства (№№13991, 3001, 329, 925, 2228, 139), стандартного вируса бешенства - CVS, производственного штамма «Овечий» ГНКИ и вакцинных - «Внуково-32», «Щелково-51» и ERA 0/333 вируса бешенства. В то же время показана отрицательная реакция с отрицательными контролями - ДНК из мозговой ткани здоровых животных (лисицы, кошки, собаки, овцы и кролика), а также гетерологичными контролями - ДНК различных микроорганизмов, что свидетельствует о специфичности предлагаемого способа с использованием разработанного набора олигонуклеотидных праймеров к гену гликопротеина вируса бешенства.

Результаты электрофореграмм продуктов первого и второго этапов амплификации выборочно представлены на рисунках 1 и 2.

На рисунке 1 показана электрофореграмма продуктов первого этапа амплификации (праймеры 755 п.н.), где:

1 - слезная жидкость больного с клиническими проявлениями гидрофобии;

2 - слезная жидкость здорового человека;

3 - слюна от больного с клиническими проявлениями гидрофобии;

4 - слюна здорового человека;

5 - эпизоотический штамм №36, выделенный в РТ;

6 - эпизоотический штамм №40, выделенный в РТ;

7 - эпизоотический штамм №258, выделенный в РТ;

8 - эпизоотический штамм №5359, выделенный в РТ;

9 - эпизоотический штамм №36, выделенный в Смоленской обл.;

10 - отрицательный контрольный образец;

11 - вирус бешенства, штамм «Овечий» ГНКИ;

12 - стандартный вирус бешенства, штамм CVS;

M - маркер молекулярного веса Fermentas 100-3000 пар оснований.

На рисунке 2 показана электрофореграмма продуктов второго этапа амплификации (праймеры 259 п.н.), где:

1 - слезная жидкость больного с клиническими проявлениями гидрофобии;

2 - слезная жидкость здорового человека;

3 - слюна от больного с клиническими проявлениями гидрофобии;

4 - слюна здорового человека;

5 - эпизоотический штамм №36, выделенный в РТ;

6 - эпизоотический штамм №40, выделенный в РТ;

7 - эпизоотический штамм №258, выделенный в РТ;

8 - эпизоотический штамм №5359, выделенный в РТ;

9 - эпизоотический штамм №36, выделенный в Смоленской обл.;

10 - отрицательный контрольный образец;

11 - вирус бешенства, штамм «Овечий» ГНКИ;

12 - стандартный вирус бешенства, штамм CVS;

M - маркер молекулярного веса Fermentas 100-3000 пар оснований.

Из данных рисунка 1 видно, что исследуемые пробы: слезная жидкость и слюна больного с клиническими признаками гидрофобии, эпизоотические изоляты (№№36,40,258 и 5359), выделенные в РТ, и изолят №36, выделенный в Смоленской области, а также производственный штамм «Овечий» ГНКИ вируса бешенства и стандартный вирус бешенства, штамм CVS, идентифицируются с помощью внешних праймеров fp_850_gp_rabv и rp_850_gp_rabv на ген гликопротеина вируса бешенства, амплифицирующие участок гена гликопротеина в 755 п.н. В то же время реакция отсутствовала с пробами слюны и слезной жидкости от здорового человека и в отрицательном контрольном образце, что свидетельствует о специфичности предлагаемого способа.

Из данных рисунка 2 видно, что исследуемые пробы: слезная жидкость и слюна больного с клиническими признаками гидрофобии, эпизоотические изоляты (№№36, 40, 258 и 5359), выделенные в РТ, и изолят №36, выделенный в Смоленской области, а также производственный штамм «Овечий» ГНКИ вируса бешенства и стандартный вирус бешенства, штамм CVS, идентифицируются с помощью внутренних праймеров fp_350_gp_rabv и rp_350_gp_rabv на ген гликопротеина вируса бешенства, амплифицирующие участок гена гликопротеина в 259 п.н. В то же время реакция отсутствовала с пробами слюны и слезной жидкости от здорового человека и в отрицательном контрольном образце, что свидетельствует о специфичности метода ОТ-ПЦР.

Таким образом, предлагаемый способ обладает специфичностью при выявлении РНК штаммов и изолятов вируса бешенства. Указанный способ позволяет выявлять РНК вируса бешенства в исследуемых образцах (патологический материал от больных бешенством животных, культуральных жидкостях, вакцинных штаммов вируса бешенства, клиническом материале - слезная жидкость и слюна больного гидрофобией). Апробация праймеров осуществлена с использованием изолятов вируса бешенства (11 проб), выделенных от различных видов диких и домашних животных на территории Республики Татарстан и Смоленской области Российской Федерации, 3-х вакцинных, производственного и стандартного штаммов вируса бешенства, а также клинического материала (2 пробы). Показано, что применение разработанных праймеров для индикации РНК вируса бешенства в патологическом и клиническом материале обеспечивает синтез фрагментов ДНК рассчитанных размеров (внешнего 755 п.о.) и (внутреннего 259 п.о.) в условиях предлагаемой ОТ-ПЦР.

Преимущества разработанного метода перед классической биопробой на белых мышах представлены в таблице 3.

Таблица 3. Сравнительная оценка эффективности биопробы на белых мышах и предлагаемого ОТ-ПЦР при исследовании образцов на бешенство

Таким образом, предлагаемый способ позволяет проводить эффективное выявление РНК штаммов и изолятов вируса бешенства в патологическом и клиническом материале, а также сократить сроки проведения исследований до 6 часов, снизить себестоимость диагностики в 9,8 раза, трудозатраты - в 40 раз.

Литература

1. Tordo Ν., Poch Ο., Ermine Α., Keith. G., Rougeon F. Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology. 1988:165(2): 565-76.

2. Tordo, N., Poch, O., Ermine, A., Keith, G. and Rougeon, F. Walking along the rabies genome: is the large G-L intergenic region a remnant gene? Proc. Natl. Acad. Sci. U.S.A. 1986: 83 (11), 3914-18.

3. Tordo Ν., Roch О. Structure of rabies virus. Rabies. Boston: Kluwer Academic Publishers. 1988: 25-45.

4. Tordo N., Sacramento D., Bourhy H. The polymerase chain reaction (PCR) technique for diagnosis, typng and epidemiological studies of rabies/ In: Kaplan M.M., Koprowski H., Meslin F.-X. Laboratory techniques in rabies Eds. WHO. Geneva. 1996:157-70.

5. Государственный стандарт СССР 26075. Животные сельскохозяйственные. Методы лабораторной диагностики бешенства. Введ. 9.01.1984. М.: Государственный комитет СССР по стандартам; 1984.

6. Хисматуллина Н.А., Юсупов Р.Х., Селимов М.А., Янбарисова С.Р. Разработка экспресс-методов иммунологического мониторинга при бешенстве. Вопросы вирусологии. 2001; 5: 45-8.

7. Патент RU №2340673, МПК C12N 15/00, опубл. 10.12.2008 г.

8. Nadin-Davis S.A., Yuang W., Wandeler A.I. The design of strain-specific polymerase chain reactions for discrimination of the raccon rabies virus strain from indigenous rabies viruses of Ontario. J. Virol. Methods. 1996 Mar; 57 (1): 1-14.

9. Wakeley P.R., Johnson N., McElhinney L.M. et al. Development of a real-time, TaqMan reverse transcription-PCR assay for detection and differentiation of Lissavirus genotypes 1,5 and 6. J.Clin.Microbiol.2005; 43(6): 2786-92.

10. Crepin P., Andru L., Rotivel Y. et al. Intravital diagnosis of human rabies by PCR using saliva and cerebrospinal fluid. J. Clin. Microbiol. 1998; 36 (4): 1117-21.

11. Nagaraj T., Kumar S., Dudley J., Nei M,, Tamura K. MEGA: biologist-centricsoltware for evolutionary analysis of DNA and protein seqvences. http://Brif.Bioinform.2008; 9:299-306.

12. Kumar S., Dudley J., Nei M., Tamura K. MEGA: biologist-centricsoltware for evolutionary analysis of DNA and protein seqvences. http://Brif.Bioinform.2008; 9:299-306.

Похожие патенты RU2575088C1

название год авторы номер документа
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ ДЛЯ ИДЕНТИФИКАЦИИ РНК ВИРУСА БЕШЕНСТВА В ОБРАЗЦАХ 2007
  • Зайковская Анна Владимировна
  • Нетесов Сергей Викторович
  • Рассадкин Юрий Николаевич
  • Терновой Владимир Александрович
  • Шестопалов Александр Михайлович
RU2340673C1
СИНТЕТИЧЕСКИЕ ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ И СПОСОБ ВЫЯВЛЕНИЯ РНК ВИРУСА РЕСПИРАТОРНО-СИНЦИТИАЛЬНОЙ ИНФЕКЦИИ КРУПНОГО РОГАТОГО СКОТА С ПОМОЩЬЮ СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ В ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ (ПЦР) 2009
  • Глотов Александр Гаврилович
  • Глотова Татьяна Ивановна
  • Котенева Светлана Владимировна
  • Нефедченко Алексей Васильевич
RU2405039C1
Синтетические олигонуклеотидные праймеры и способ использования вируса болезни Ньюкасла в качестве внутреннего контрольного образца при постановке ОТ-ПЦР для выявления генома вируса бешенства 2022
  • Чупин Сергей Александрович
  • Назаров Николай Алексеевич
  • Киселева Валерия Владимировна
  • Еремина Анна Гарибальдиевна
RU2809242C1
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ФИКСИРОВАННОГО ВИРУСА БЕШЕНСТВА ШТАММА "МОСКВА 3253" 2012
  • Матвеева Жанна Владимировна
  • Осина Наталья Александровна
  • Бугоркова Татьяна Васильевна
  • Абрамова Елена Геннадьевна
  • Генералов Сергей Вячеславович
  • Майоров Николай Викторович
  • Никифоров Алексей Константинович
  • Кутырев Владимир Викторович
RU2511440C2
СИНТЕТИЧЕСКИЕ ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ И СПОСОБ ВЫЯВЛЕНИЯ РНК ВИРУСА ВИРУСНОЙ ДИАРЕИ - БОЛЕЗНИ СЛИЗИСТЫХ КРУПНОГО РОГАТОГО СКОТА С ПОМОЩЬЮ СПЕЦИФИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ В ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ (ПЦР) С ОДНОВРЕМЕННОЙ ДИФФЕРЕНЦИАЦИЕЙ ШТАММОВ ВИРУСА НА 1 И 2 ГЕНОТИП 2007
  • Глотов Александр Гаврилович
  • Глотова Татьяна Ивановна
  • Нефедченко Алексей Васильевич
RU2347812C1
ПАРА СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ ДЛЯ ВЫЯВЛЕНИЯ ВИРУСА ИММУНОДЕФИЦИТА КОШЕК И СПОСОБ ДИАГНОСТИКИ ВИРУСНОГО ИММУНОДЕФИЦИТА КОШЕК 2014
  • Красникова Екатерина Сергеевна
  • Ларионова Ольга Сергеевна
  • Красников Александр Владимирович
  • Марушева Юлия Алексеевна
RU2553534C1
Способ дифференциации генома вакцинного штамма "ВНИИЗЖ" от полевых изолятов вируса бешенства методом полимеразной цепной реакции в режиме реального времени с анализом пиков температур плавления ампликонов и применением асимметричного красителя SYBR Green 2023
  • Доронин Максим Игоревич
  • Малыгин Максим Павлович
  • Михалишин Дмитрий Валерьевич
  • Чвала Илья Александрович
  • Борисов Алексей Валерьевич
  • Прохватилова Лариса Борисовна
  • Ручнова Ольга Ивановна
RU2822037C1
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ФЛУОРЕСЦЕНТНО-МЕЧЕНОГО ЗОНДА ДЛЯ ИДЕНТИФИКАЦИИ РНК ВИРУСА ЛИХОРАДКИ ДОЛИНЫ РИФТ МЕТОДОМ ОТ ПЦР В РЕАЛЬНОМ ВРЕМЕНИ 2014
  • Евдокимов Алексей Альбертович
  • Кузнецов Виталий Викторович
  • Нетесова Нина Александровна
  • Сметанникова Наталья Анатольевна
RU2552795C1
РЕКОМБИНАНТНЫЙ ШТАММ Escherichia coli TG1(pRVMoscow3253G-L) ДЛЯ ПОЛУЧЕНИЯ НАБОРА ПЦР-СТАНДАРТОВ И НАБОР ПЦР-СТАНДАРТОВ ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ШТАММА ВИРУСА БЕШЕНСТВА "Москва 3253" В РАБИЧЕСКОМ АНТИГЕНЕ 2012
  • Матвеева Жанна Владимировна
  • Осина Наталья Александровна
  • Бугоркова Татьяна Васильевна
  • Тучков Игорь Витальевич
  • Яшечкин Юрий Иванович
  • Абрамова Елена Геннадьевна
  • Майоров Николай Викторович
  • Никифоров Алексей Константинович
  • Кутырев Владимир Викторович
RU2511029C2
Набор праймеров для идентификации РНК штаммов Puumala orthohantavirus, распространённых в Республике Татарстан 2019
  • Давидюк Юрий Николаевич
  • Хайбуллина Светлана Францевна
  • Ризванов Альберт Анатольевич
  • Кабве Эммануэль
  • Шамсутдинов Антон Феликсович
  • Исаева Гузель Шавхатовна
  • Решетникова Ирина Дмитриевна
  • Савицкая Татьяна Александровна
  • Трифонов Владимир Александрович
RU2720252C1

Иллюстрации к изобретению RU 2 575 088 C1

Реферат патента 2016 года НАБОР СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ ДЛЯ ВЫЯВЛЕНИЯ РНК ВИРУСА БЕШЕНСТВА И СПОСОБ ВЫЯВЛЕНИЯ РНК ВИРУСА БЕШЕНСТВА С ПОМОЩЬЮ СИНТЕТИЧЕСКИХ ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ В ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ С ОБРАТНОЙ ТРАНСКРИПЦИЕЙ (ОТ-ПЦР)

Изобретение относится к области биотехнологии, а именно к способу выявления РНК вируса бешенства и набору, который используется в данном способе. Способ включает проведение ОТ-ПЦР с олигонуклеотидными праймерами. Праймеры имеют следующие нуклеотидные последовательности: fp_850_gp_rabv 5' TTAGACTTATGGATGGAACATGGGT 3', rp_850_gp_rabv 5' AGTGACTGACACCTCCCTCCCT 3', fp_350_gp_rabv 5'TCAGACGAAATTGAGCACCTTGT3', rp_350_gp_rabv 5'ACCTCCCCCCAACTCTTAAACA3'. ОТ-ПЦР проводят в два раунда, при этом в случае положительной реакции синтезируется фрагмент, соответствующий размеру в первом раунде - 755 п.н., во втором - размеру 259 п.н. Предложенное изобретение позволяет проводить выявление РНК штаммов и изолятов вируса бешенства различного происхождения на ранних этапах клинического проявления, а также снизить себестоимость диагностики. 2 н.п. ф-лы, 2 ил., 3 табл., 4 пр.

Формула изобретения RU 2 575 088 C1

1. Набор синтетических олигонуклеотидных праймеров для выявления РНК вируса бешенства, отличающийся тем, что праймеры имеют нуклеотидные последовательности:
fp_850_gp_rabv 5' TTAGACTTATGGATGGAACATGGGT 3',
rp_850_gp_rabv 5' AGTGACTGACACCTCCCTCCCT 3',
fp_350_gp_rabv 5' TCAGACGAAATTGAGCACCTTGT 3',
rp_350_gp_rabv 5' ACCTCCCCCCAACTCTTAAACA3'.

2. Способ выявления РНК вируса бешенства, включающий проведение ОТ-ПЦР с олигонуклеотидными праймерами, отличающийся тем, что праймеры имеют нуклеотидные последовательности:
fp_850_gp_rabv 5' TTAGACTTATGGATGGAACATGGGT 3',
rp_850_gp_rabv 5' AGTGACTGACACCTCCCTCCCT 3',
fp_350_gp_rabv 5' TCAGACGAAATTGAGCACCTTGT3',
rp_350_gp_rabv 5' ACCTCCCCCCAACTCTTAAACA3'
и синтезированы на консервативный ген гликопротеина, а ОТ-ПЦР проводят в два раунда, при этом в случае положительной реакции синтезируется фрагмент, соответствующий размеру в первом раунде - 755 п.н., во втором - размеру 259 п.н.

Документы, цитированные в отчете о поиске Патент 2016 года RU2575088C1

SATO G
ET AL., Rapid discrimination of rabies viruses isolated from various host species in Brazil by multiplex reverse transcription-polymerase chain reaction, J Clin Virol., 2005, v.33, no.4, p
Тепловой измеритель силы тока 1921
  • Гордеев П.П.
SU267A1
GUPTA P.K
ET AL., Preliminary report on a single-tube, non-interrupted reverse transcription-polymerase chain reaction for the detection of

RU 2 575 088 C1

Авторы

Иванов Аркадий Васильевич

Хисматуллина Наиля Анваровна

Усольцев Константин Валерьевич

Гулюкин Алексей Михайлович

Александрова Наталья Михайловна

Южаков Антон Геннадьевич

Сабирова Валентина Васильевна

Чернов Альберт Николаевич

Иванов Александр Аркадьевич

Забережный Алексей Дмитриевич

Самерханов Ильнур Иршатович

Паршикова Анна Владимировна

Фаизов Тагир Хадиевич

Даты

2016-02-10Публикация

2014-10-02Подача