СПОСОБ КАЛИБРОВКИ ПРИЕМНЫХ РАДИОКАНАЛОВ РАДИОИНТЕРФЕРОМЕТРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2016 года по МПК G01S7/40 

Описание патента на изобретение RU2575209C2

Изобретение относится к радиотехнике и может быть использовано в радиоинтерферометрах и радиопеленгаторах-дальномерах диапазона СВЧ. Изобретение применимо в стационарных и мобильных системах определения местоположения объектов по радиоизлучению бортовых передатчиков СВЧ диапазона. Изобретение предназначено для контроля и корректировки амплитудной и фазовой неидентичности приемных радиоканалов радиоинтерферометра в широкой полосе частот и при различных расстояниях между приемными антеннами.

Погрешности пеленгования в радиоинтерферометре в значительной мере определяются неидеальностью приемных радиоканалов [1]. При этом характеристики приемных радиоканалов подвержены влиянию погодных условий, старению элементов и т.д. Для компенсации систематических ошибок в радиоинтерферометре необходим режим калибровки приемных радиоканалов с использованием средств встроенного контроля. Процедура калибровки должна проводиться периодически.

Известен способ калибровки приемных трактов радиоинтерферометра [1], включающий:

формирование широкополосного импульсного контрольного сигнала (КС), уровень которого ниже уровня собственных шумов приемника;

излучение КС отдельной калибровочной антенной на каждую приемную антенну радиоинтерферометра;

прием КС каждым каналом;

преобразование КС в цифровую форму;

корреляционное накопление и обработка КС;

построение амплитудной и фазовой характеристик.

Данный способ калибровки позволяет совместить калибровку и работу, но имеет следующие недостатки:

отсутствует механизм учета амплитудных и фазовых неидентичностей каналов передачи КС к приемным трактам, что приобретает особую значимость при увеличении расстояний между приемными антеннами радиоинтерферометра;

не учитывается взаимное расположение приемной и калибровочной антенн, их индивидуальные особенности и влияние переотражений;

различие структуры калибровочного сигнала и рабочих сигналов снижает эффективность калибровки;

в результате совмещения режимов работы и калибровки снижается отношение сигнал-шум.

Также известен способ калибровки приемных трактов [2], включающий:

формирование широкополосного импульсного КС;

излучение КС одной антенной со множества азимутальных направлений на все приемные антенны;

прием сигналов каждым каналом;

преобразование сигнала в цифровую форму;

корреляционное выделение сигналов различных лучей и поляризаций;

создание калибровочной базы данных.

Данный способ калибровки охватывает наряду с приемными трактами приемные антенны и также может быть использован для калибровки, но у данного способа также есть недостатки, к которым относятся:

необходимость использования вынесенного передатчика КС на определенном удалении и обеспечения передачи с различных направлений представляется затруднительным, особенно для стационарных систем;

отсутствует механизм учета амплитудных и фазовых неидентичностей каналов передачи КС к приемным трактам, что приобретает особую значимость при увеличении расстояний между приемными антеннами радиоинтерферометра.

Приведенные выше способы калибровки не обеспечивают необходимую точность и не являются простыми в реализации, но существуют и другие методы, одним из которых является внутренняя калибровка радиоканалов при отключенных приемных антеннах. Калибровка приемных антенн проводится отдельно.

Наиболее близким к предлагаемому способу калибровки приемных радиоканалов интерферометра по совокупности действий над сигналом является принятый за прототип способ [3], основанный на передаче КС на входы приемных радиоканалов с помощью отдельной кабельной линии связи (КЛС).

Согласно этому способу:

1. Формируют импульсный КС на различных частотах.

2. Коммутируют линию раздачи КС на передачу в прямом направлении.

3. Принимают сигнал каждым каналом.

4. Синхронно преобразуют сигнал в каждом канале в цифровой поток.

5. Вычисляют и запоминают относительные амплитудные и фазовые характеристики между каналами.

6. Коммутируют линию раздачи калибровочного сигнала на передачу в обратном направлении.

7. Повторяют пункты 3, 4, 5.

8. На основе данных двух этапов создают калибровочную базу данных.

Данный способ обеспечивает возможность учета амплитудных и фазовых неидентичностей каналов передачи КС, однако требует применения отдельной КЛС для их передачи, что при больших расстояниях между приемными антеннами является существенным недостатком. Кроме того, способ не обеспечивает предельно достижимые точности калибровки, т.к. при увеличении расстояния между приемными антеннами возрастает разница в уровне сигналов между каналами, а при использовании двунаправленных усилителей снижается точность калибровки.

Наиболее близким к предлагаемому устройству калибровки по совокупности признаков является принятое за прототип устройство [4], содержащее N приемных радиоканалов, состоящих соответственно из последовательно соединенных приемных антенн, ненаправленных элементов связи, смесителей и усилителей промежуточной частоты (УПЧ), гетеродина и контрольного генератора.

Недостатками устройства калибровки приемных трактов радиоинтерферометра являются:

невозможность исключить влияние присутствующих в эфире сигналов на результат калибровки;

невозможность сохранения приемлемого уровня КС на всех входах приемных трактов при возрастании длины КЛС.

необходимость дополнительной отдельной линии передачи КС на каждый канал, что приводит к существенному возрастанию затрат на создание радиоинтерферометра при увеличении расстояний между приемными антеннами.

Техническим результатом изобретения является повышение точности измерения амплитудной и фазовой идентичности приемных радиоканалов радиоинтерферометра при значительных расстояниях между приемными антеннами в широкой полосе частот, а также повышение точности формирования базы калибровочных данных и совмещение функций КЛС для передачи принимаемых и калибровочных сигналов.

Технический результат достигается тем, что в способе калибровки приемных радиоканалов радиоинтерферометра диапазона СВЧ, включающем формирование радиоимпульсного контрольного сигнала (КС), перестраеваемого на множестве калибровочных частот, передачу его на входы приемных трактов, синхронное преобразование прошедших приемные каналы КС в цифровую форму и определение разности электрических длин приемных каналов для каждой n-ой частоты калибровки в результате измерений задержек КС на двух этапах его прямой и обратной передачи, согласно изобретению на первом этапе калибровки отключают выходы антенн и передают КС на входы приемных трактов по кабельным линиям связи (КЛС), которые переключают через время τ на обратную передачу через приемные тракты, а на втором этапе калибровки замыкают КЛС на входах приемных трактов и принимают отраженный КС, причем формируют импульсный КС, длительность импульса которого меньше времени распространения сигнала во входных цепях приемных трактов.

Способ реализуется устройством для калибровки радиоканалов. Другим техническим результатом изобретения является упрощение конструкции устройства за счет совмещения функций КЛС для передачи принимаемых и калибровочных сигналов, а также исключение ошибок калибровки из-за влияния внешних сигналов.

Технический результат достигается тем, что в устройство для реализации способа калибровки радиоканалов радиоинтерферометра, состоящее из N приемных радиоканалов, включающих приемные антенны, генератор калибровочных сигналов, блок управления и обработки, согласно изобретению введены первые, вторые и третьи коммутаторы, усилители, первые и вторые линии задержки, первые и вторые направленные ответвители, формирователи стробов и сумматоры, причем выходы первых коммутаторов через усилители соединены с входами первых линий задержки, выходы которых подключены к третьим входам вторых коммутаторов, вторые выходы вторых коммутаторов соединены с первыми входами первых коммутаторов, а входы-выходы вторых коммутаторов через вторые линии задержки подключены к входам-выходам первых направленных ответвителей, выходы которых через формирователи стробов подключены к управляющим входам вторых коммутаторов, другие входы-выходы первых ответвителей соединены с входами-выходами третьих коммутаторов, выходы которых через сумматоры подключены к блоку управления и обработки, а входы третьих коммутаторов через вторые направленные ответвители подключены к выходам генератора калибровочных сигналов, который также подключен к управляющему входу третьего коммутатора, другие выходы вторых направленных ответвителей через сумматоры подключены к блоку управления и обработки.

На чертеже приведена структурная схема устройства для калибровки радиоканалов радиоинтерферометра.

Для наглядности структурная схема показана для двух каналов и может быть расширена на произвольное число каналов.

Устройство состоит из последовательно соединенных приемных антенн, первых коммутаторов 1-1, 1-2, усилителей 2-1, 2-2, первых линий задержки 3-1, 3-2, вторых коммутаторов 4-1, 4-2, линий задержки 5-1, 5-2, первых направленных ответвителей 6-1, 6-2, формирователей стробов 7-1, 7-2, третьих коммутаторов 8-1, 8-2, сумматоров 9-1, 9-2, блока управления и обработки 10, вторых направленных ответвителей 11-1, 11-2, генератора калибровочных сигналов 12. Сигнал с антенн подается на вторые входы первых коммутаторов 1-1, 1-2, выходы которых через усилители 2-1, 2-2 соединены с входами первых линий задержки 3-1, 3-2, выходы которых подключены к третьим входам вторых коммутаторов 4-1, 4-2, вторые выходы которых соединены с первыми входами первых коммутаторов 1-1, 1-2, а входы-выходы вторых коммутаторов 4-1, 4-2 через вторые линии задержки 5-1, 5-2 подключены к входам-выходам первых направленных ответвителей 6-1, 6-2, выходы которых через формирователи стробов 7-1, 7-2 подключены к управляющим входам вторых коммутаторов 4-1, 4-2, другие входы-выходы первых ответвителей 6-1, 6-2 соединены с входами-выходами третьих коммутаторов 8-1, 8-2, выходы которых через сумматоры 9-1, 9-2 подключены к блоку управления и обработки 10, а входы третьих коммутаторов 8-1, 8-2 через вторые направленные ответвители 11-1, 11-2 подключены к выходам генератора калибровочных сигналов 12, который также подключен к управляющему входу третьих коммутаторов 8-1, 8-2, другой выход вторых направленных ответвителей 11-1, 11-2 через сумматоры 9-1, 9-2 подключен к блоку управления и обработки 10.

Устройство работает следующим образом.

Измерение амплитудной и фазовой идентичности приемных радиоканалов проводится в два этапа, различающихся порядком работы коммутаторов.

На первом этапе производят измерение амплитудной и фазовой идентичности приемных радиоканалов совместно с цепями передачи КС. Для этого первые коммутаторы 1-1 и 1-2 переводят в режим калибровки, посредством отключения антенн и подключения их ко вторым коммутаторам 4-1, 4-2. Запускают генератор калибровочных сигналов 12 в режиме генерации импульсов. Период и длительность импульсов выбирают исходя из длины КЛС для исключения наложения импульсов, частоту перестраивают в пределах диапазона, но в пределах импульса частота остается постоянной. КС с генератора калибровочных сигналов 12 через вторые направленные ответвители 11-1 и 11-2 и третьи коммутаторы 8-1 и 8-2, управляемые генератором 12, передают в КЛС, а затем в первые направленные ответвители 6-1, 6-2, откуда КС передается на формирователи стробов 7-1, 7-2, управляющие трехпозиционными коммутаторами 4-1, 4-2. На первом этапе, при прохождении КС от КЛС в направленные ответвители 6-1, 6-2, вторые коммутаторы 4-1 и 4-2 переводят в среднее положение, обеспечивающее передачу КС через первые коммутаторы 1-1, 1-2, усилители 2-1, 2-2 и линии задержки 3-1 и 3-2. Затем формирователи стробов 7-1 и 7-2 переводят трехпозиционные коммутаторы 4-1, 4-2 в положение, обеспечивающее передачу КС через КЛС на третьи коммутаторы 8-1, 8-2, сумматоры 9-1, 9-2 и блок управления и обработки 10, где производится измерение разности электрических длин линий связи.

На втором этапе производят измерение амплитудной и фазовой характеристик КЛС, для этого трехпозиционные коммутаторы 4-1 и 4-2 переводят в положение, обеспечивающее режим короткого замыкания, и запускают генератор калибровочных сигналов 12 в режиме генерации импульсов. Период и длительность импульсов выбирают исходя из задержки распространения КС в КЛС для исключения наложения импульсов, частоту перестраивают в пределах диапазона, но в пределах импульса частота остается постоянной. Третьи коммутаторы 8-1 и 8-2, управляемые генератором калибровочных сигналов 12, при прохождении КС передают импульсы через направленные ответвители 11-1 и 11-2 к направленным ответвителям 6-1 и 6-2, пропуская КС через КЛС приемного тракта в прямом и после отражения от вторых коммутаторов 4-1 и 4-2 в обратном направлениях. При возвращении КС третьи коммутаторы 8-1 и 8-2 переводят в положение, обеспечивающее передачу КС через сумматоры 9-1 и 9-2 в блок управления и обработки 10, где производится комплексная кросскорреляционная обработка импульсов, прошедших как через КЛС в прямом и обратном направлениях, так и импульсов, которые через направленные ответвители 11-1, 11-2 и сумматоры 9-1 и 9-2 непосредственно передаются на блок управления и обработки 10.

Предлагаемый способ позволяет обеспечить высокую точность измерения разности электрических длин приемных трактов в широкой полосе частот и при произвольных расстояниях между антеннами, а устройство для его реализации обеспечивает практически полную компенсацию систематической погрешности, обусловленной неидентичностью приемных радиоканалов радиоинтерферометра. Ошибка измерения разности электрических длин приемных радиоканалов не превысила точность измерительных приборов.

Способ и устройство позволяют сократить общую длину КЛС в два раза и выровнять уровни КС во всех приемных радиоканалах, что особенно важно при создании радиоинтерферометров с большой базой.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Дятлов А.П., Дятлов П.А. Радиоинтерферометр с калибровкой приемных трактов. Специальная техника, 2010 г., №4, с. 26-32.

2. RU, патент, 2476986, МПК 7: G01S 11/00, G01S 11/02, G01S 11/10, 2013 г.

3. US, патент, 4494118, МПК 7: G01S 5/02, 1985 г.

4. RU, патент, 2269791, МПК 7: G01S 3/10, G01S 7/40, 2004 г.

Похожие патенты RU2575209C2

название год авторы номер документа
ПЕЛЕНГАЦИОННОЕ УСТРОЙСТВО (ВАРИАНТЫ) 2010
  • Гаврилов Юрий Андреевич
  • Ландсберг Иван Леонович
  • Федоренко Иван Александрович
RU2504796C2
Устройство для измерения коэффициента шума радиоприемников 1982
  • Альтшулер Михаил Бенционович
  • Колошеина Галина Ивановна
  • Михайлюк Анатолий Федорович
SU1020787A2
СПОСОБ ВСТРОЕННОЙ КАЛИБРОВКИ АКТИВНОЙ ФАЗИРОВАННОЙ АНТЕННОЙ РЕШЕТКИ 2014
  • Базин Игорь Борисович
RU2568968C1
СПОСОБ КОРРЕКЦИИ АМПЛИТУДНО-ФАЗОВОГО РАСПРЕДЕЛЕНИЯ РАСКРЫВАЕМОЙ АНТЕННОЙ РЕШЕТКИ 2022
  • Голик Александр Михайлович
  • Шишов Юрий Аркадьевич
  • Толстуха Юрий Евгеньевич
  • Заседателев Андрей Николаевич
RU2792222C1
МОНОИМПУЛЬСНЫЙ РАДИОЛОКАТОР 1999
  • Маршов А.М.
  • Урманчеев Ф.А.
  • Гальперин Т.Б.
  • Синицын Е.А.
  • Беляева Г.А.
  • Шкенева Л.А.
RU2155355C1
Устройство для измерения шумовой температуры радиоприемного комплекса 1986
  • Альтшулер Михаил Бенционович
  • Михайлюк Анатолий Федорович
SU1406536A1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ НА ИСТОЧНИК РАДИОИЗЛУЧЕНИЯ И ПЕЛЕНГАТОР 2010
  • Вернигора Владимир Николаевич
  • Лопатько Николай Пантелеевич
  • Половинкин Петр Анатольевич
  • Толстоконев Николай Александрович
RU2434240C1
РАДИОМЕТР ДЛЯ ИЗМЕРЕНИЯ ГЛУБИННЫХ ТЕМПЕРАТУР ОБЪЕКТА (РАДИОТЕРМОМЕТР) 2011
  • Филатов Александр Владимирович
  • Лощилов Антон Геннадьевич
  • Убайчин Антон Викторович
RU2485462C2
МОНОИМПУЛЬСНЫЙ РАДИОЛОКАТОР 1997
  • Маршов А.М.
  • Урманчеев Ф.А.
  • Воробьев С.В.
  • Ларионов В.Н.
  • Варламов Б.А.
  • Окинин В.Н.
  • Гуревич Н.С.
  • Синицын Е.А.
RU2122218C1
Способ и устройство для калибровки приемной активной фазированной антенной решетки 2016
  • Шишов Юрий Аркадьевич
  • Подольцев Виктор Владимирович
  • Подъячев Виталий Владимирович
  • Губанов Дмитрий Валерьевич
  • Вахлов Михаил Григорьевич
  • Луцько Ирина Сергеевна
RU2641615C2

Иллюстрации к изобретению RU 2 575 209 C2

Реферат патента 2016 года СПОСОБ КАЛИБРОВКИ ПРИЕМНЫХ РАДИОКАНАЛОВ РАДИОИНТЕРФЕРОМЕТРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретение относится к радиотехнике и может быть использовано в радиоинтерферометрах и радиопеленгаторах-дальномерах сверхвысокочастотного (СВЧ). Достигаемый технический результат - повышение точности формирования базы калибровочных данных и сокращение в два раза необходимого количества кабельных линий связи (КЛС), Указанный результат достигается за счет того, что в способе калибровки приемных радиоканалов радиоинтерферометра и в устройстве для его реализации осуществляется контроль и корректировка амплитудной и фазовой идентичности приемных радиоканалов радиоинтерферометра в широкой полосе частот и при различных расстояниях между приемными антеннами. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 575 209 C2

1. Способ калибровки приемных радиоканалов радиоинтерферометра диапазона СВЧ, включающий формирование радиоимпульсного контрольного сигнала (КС), перестраиваемого на множестве калибровочных частот, передачу его на входы приемных радиоканалов, синхронное преобразование прошедших приемные радиоканалы КС в цифровую форму и определение разности электрических длин приемных радиоканалов для каждой n-й частоты калибровки в результате измерений задержек КС на двух этапах его прямой и обратной передачи, отличающийся тем, что на первом этапе калибровки отключают выходы антенн и передают КС на входы приемных радиоканалов по кабельным линиям связи (КЛС), которые переключают через время τ на обратную передачу через приемные радиоканалы, а на втором этапе калибровки замыкают КЛС на входах приемных радиоканалов и принимают отраженный КС, причем формируют импульсный КС, длительность импульса которого меньше времени распространения сигнала во входных цепях приемных радиоканалов.

2. Устройство для реализации способа калибровки приемных радиоканалов радиоинтерферометра по п. 1, состоящее из N приемных радиоканалов, включающих приемные антенны, генератор калибровочных сигналов, блок управления и обработки, отличающееся тем, что в каждый из N приемных радиоканалов введены первый, второй и третий коммутаторы, усилитель, первая и вторая линия задержки, первый и второй направленный ответвители, формирователь стробов и сумматор, причем в каждом приемном радиоканале первый вход первого коммутатора соединен с выходом приемной антенны, выход первого коммутатора через усилитель соединен с входом первой линии задержки, выход которой подключен к третьему входу второго коммутатора, второй выход второго коммутатора соединен со вторым входом первого коммутатора, вход-выход второго коммутатора через вторую линию задержки подключен к входу-выходу первого направленного ответвителя, выход которого через формирователь стробов подключен к управляющему входу второго коммутатора, другой вход-выход первого ответвителя соединен с входом-выходом третьего коммутатора, выход третьего коммутатора каждого приемного радиоканала через соответствующий сумматор подключен к блоку управления и обработки, при этом вход третьего коммутатора каждого приемного радиоканала через второй направленный ответвитель подключен к выходам генератора калибровочных сигналов, который также подключен к управляющему входу третьего коммутатора, другой выход второго направленного ответвителя каждого приемного радиоканала через сумматор подключен к блоку управления и обработки.

Документы, цитированные в отчете о поиске Патент 2016 года RU2575209C2

US 4494118 A, 15.01.1985
СПОСОБ КАЛИБРОВКИ ДЕКАМЕТРОВОГО РАДИОПЕЛЕНГАТОРА-ДАЛЬНОМЕРА 2010
  • Шевченко Валерий Николаевич
  • Вертоградов Геннадий Георгиевич
RU2422846C1
КАЛИБРОВКА КАНАЛА ДЛЯ КОММУНИКАЦИОННОЙ СИСТЕМЫ С ДУПЛЕКСНОЙ СВЯЗЬЮ И ВРЕМЕННЫМ РАЗДЕЛЕНИЕМ КАНАЛА 2009
  • Уоллэйс Марк
  • Кетчум Джон У.
  • Уолтон Родни Дж.
  • Говард Стивен Дж.
RU2437220C2
СИСТЕМА ВСТРОЕННОГО КОНТРОЛЯ И КАЛИБРОВКИ МОНОИМПУЛЬСНОЙ РЛС 2011
  • Нестеров Юрий Григорьевич
  • Сиразитдинов Камиль Шайхуллович
  • Мухин Владимир Витальевич
  • Валов Сергей Вениаминович
  • Черепенин Геннадий Михайлович
RU2459219C1
US 6707417 B2, 16.03.2004
Звездочка для втулочно-роликовых цепей 1989
  • Кохно Вадим Андреевич
SU1798567A1
US 6072426 A, 06.06.2000.

RU 2 575 209 C2

Авторы

Карпенко Вячеслав Викторович

Клепфер Евгений Иванович

Мельников Сергей Васильевич

Даты

2016-02-20Публикация

2014-01-28Подача