Изобретение относится к области нанотехнологии и ветеринарии, в частности к способу получения нанокапсул АСД.
Ранее были известны способы получения микрокапсул.
В пат. РФ 2173140 МПК A61K 009/50, A61K 009/127, опубл. 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. РФ 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009 предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).
Наиболее близким методом является способ, предложенный в пат. РФ 2134967 МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул активатора-стимулятора Дорогова (АСД) 2 фракция, отличающийся тем, что в качестве оболочки нанокапсул используется натрий карбоксиметилцеллюлоза, а в качестве ядра - АСД 2 фракция при получении нанокапсул методом осаждения нерастворителем с применением ацетонитрила в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием ацетонитрила в качестве осадителя, а также использование натрий карбоксиметилцеллюлозы в качестве оболочки частиц и АСД 2 фракция - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул АСД 2 фракция в оболочке натрий карбоксиметилцеллюлозе.
АСД 2 фракция представляет собой тканевый препарат животного происхождения. В своем составе содержит соединения с активной сульфгидрильной группой, производные алифатических аминов, карбоновые кислоты, алифатические и циклические углеводороды, производные амидов и воду. АСД-2 при пероральном применении оказывает активизирующее действие на ЦНС и вегетативную нервную систему, стимулирует моторную деятельность желудочно-кишечного тракта, секрецию пищеварительных желез, повышает активность пищеварительных и тканевых ферментов, улучшает проникновение ионов Na+ и K+ через клеточные мембраны, способствует нормализации процессов пищеварения, усвоения питательных веществ и повышению естественной резистентности организма. При наружном применении препарат стимулирует активность ретикулоэндотелиальной системы, нормализует трофику и ускоряет регенерацию поврежденных тканей, обладает выраженным антисептическим и противовоспалительным действием.
ПРИМЕР 1. Получение нанокапсул АСД 2 фракция в натрий карбоксиметилцеллюлозе, соотношение ядро:оболочка 1:3 (Рис.1)
100 мг АСД 2 фракция диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием при перемешивании 1300 об/сек. Далее приливают 5 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,396 г порошка нанокапсул. Выход составил 99%.
ПРИМЕР 2. Получение нанокапсул АСД 2 фракция в натрий карбоксиметилцеллюлозе, соотношение ядро:оболочка 1:1
100 мг АСД 2 фракция диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле, содержащий указанного 100 мг полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/сек. Далее приливают 3 мл ацетонитрила. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 0,188 г порошка нанокапсул. Выход составил 94%.
ПРИМЕР 3. Определение размеров нанокапсул методом NTA
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.
Оптимальным разведением было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
Таким образом, получены нанокапсулы АСД 2 фракция с высоким выходом без специального оборудования в течение 10 мин.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИСЕПТИКА-СТИМУЛЯТОРА ДОРОГОВА (АСД) 2 ФРАКЦИЯ В ХИТОЗАНЕ | 2014 |
|
RU2566711C2 |
СПОСОБ ПОЛУЧЕНИЯ ЧАСТИЦ МИКРОКАПСУЛИРОВАННОГО АНТИСЕПТИКА-СТИМУЛЯТОРА ДОРОГОВА (АСД) 2 ФРАКЦИЯ В АЛЬГИНАТЕ НАТРИЯ | 2013 |
|
RU2538719C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ПРОБИОТИКОВ | 2014 |
|
RU2595830C2 |
СПОСОБ ИНКАПСУЛЯЦИИ ЛАКТОБИФАДОЛА | 2014 |
|
RU2570379C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИСЕПТИКА-СТИМУЛЯТОРА ДОРОГОВА (АСД) 2 ФРАКЦИЯ | 2015 |
|
RU2599840C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СЕЛ-ПЛЕКСА, ОБЛАДАЮЩИХ СУПРАМОЛЕКУЛЯРНЫМИ СВОЙСТВАМИ | 2014 |
|
RU2556118C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В КСАНТАНОВОЙ КАМЕДИ | 2014 |
|
RU2565392C1 |
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция | 2016 |
|
RU2640489C1 |
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в каррагинане | 2016 |
|
RU2625547C1 |
СПОСОБ ПОЛУЧЕНИЯ ЧАСТИЦ МИКРОКАПСУЛИРОВАННОГО АНТИСЕПТИКА-СТИМУЛЯТОРА ДОРОГОВА (АСД) 2 ФРАКЦИЯ, ОБЛАДАЮЩЕГО СУПРАМОЛЕКУЛЯРНЫМИ СВОЙСТВАМИ | 2013 |
|
RU2538671C1 |
Изобретение относится в области нанотехнологии, в частности к способу получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в оболочке натрий карбоксиметилцеллюлозе, характеризующемуся тем, что АСД 2 фракция диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле в присутствии препарата Е472с, приливают ацетонитрил в качестве осадителя, полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 1 ил., 3 пр.
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в оболочке натрий карбоксиметилцеллюлозе, характеризующийся тем, что АСД 2 фракция диспергируют в суспензию натрий карбоксиметилцеллюлозы в бензоле в присутствии препарата Е472 с, приливают ацетонитрил в качестве осадителя, полученную суспензию отфильтровывают и сушат при комнатной температуре.
Солодовник В.Д | |||
"Микрокапсулирование", М.: Химия, 1980 г | |||
Приспособление для подвешивания тележки при подъемках сошедших с рельс вагонов | 1920 |
|
SU216A1 |
NAGAVARMA B | |||
V | |||
N "Different techniques for preparation of polymeric nanoparticles"//Asian Journal Pharm Clin Res, Vol.5, Suppl.3, 2012, s.16-23 | |||
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ | 1997 |
|
RU2134967C1 |
СИСТЕМА-НОСИТЕЛЬ В ФОРМЕ НАНОЧАСТИЦ НА ОСНОВЕ ПРОТЕИНА ДЛЯ КЛЕТОЧНО-СПЕЦИФИЧЕСКОГО ОБОГАЩЕНИЯ ДЕЙСТВУЮЩИХ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ | 2005 |
|
RU2388463C2 |
Авторы
Даты
2016-02-27—Публикация
2014-03-26—Подача