Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция Российский патент 2018 года по МПК A61K35/12 A61K47/36 A61K9/51 A61J3/07 B01J13/02 B82B3/00 

Описание патента на изобретение RU2640489C1

Изобретение относится к области нанотехнологии, медицины, фармакологии и онкологии.

Ранее были известны способы получения микрокапсул.

В патенте 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В патенте 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в патенте 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул активатора-стимулятора Дорогова (АСД) 2 фракция, отличающемся тем, что в качестве оболочки нанокапсул используется геллановая камедь, а в качестве ядра - АСД 2 фракция при получении нанокапсул методом осаждения нерастворителем с применением гексана в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием гексана в качестве осадителя, а также использование геллановой камеди в качестве оболочки нанокапсул и АСД 2 фракция - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул АСД 2 фракция в оболочке геллановой камеди.

АСД 2 фракция представляет собой тканевый препарат животного происхождения. В своем составе содержит: соединения с активной сульфгидрильной группой, производные алифатических аминов, карбоновые кислоты, алифатические и циклические углеводороды, производные амидов и воду. АСД-2 при пероральном применении оказывает активизирующее действие на ЦНС и вегетативную нервную систему, стимулирует моторную деятельность желудочно-кишечного тракта, секрецию пищеварительных желез, повышает активность пищеварительных и тканевых ферментов, улучшает проникновение ионов Na+ и K+ через клеточные мембраны, способствует нормализации процессов пищеварения, усвоения питательных веществ и повышению естественной резистентности организма. При наружном применении препарат стимулирует активность ретикулоэндотелиальной системы, нормализует трофику и ускоряет регенерацию поврежденных тканей, обладает выраженным антисептическим и противовоспалительным действием.

ПРИМЕР 1. Получение нанокапсул АСД 2 фракция в геллановой камеди, соотношение ядро:оболочка 1:3

1 мл АСД 2 фракция медленно добавляют в суспензию 3 г геллановой камеди в этаноле, в присутствии 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл гексана. Выпавший осадок отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул АСД 2 фракция в геллановой камеди, соотношение ядро:оболочка 1:1

1 мл АСД 2 фракция медленно добавляют в суспензию 1 г геллановой камеди в этаноле, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл гексана. Выпавший осадок отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул АСД 2 фракция в геллановой камеди, соотношение ядро:оболочка 3:1

3 мл АСД 2 фракция медленно добавляют в суспензию 1 г геллановой камеди в этаноле, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл гексана. Выпавший осадок отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Похожие патенты RU2640489C1

название год авторы номер документа
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция 2016
  • Кролевец Александр Александрович
RU2644727C1
Способ получения нанокапсул бетулина в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2622750C1
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в конжаковой камеди 2016
  • Кролевец Александр Александрович
RU2612347C1
Способ получения нанокапсул лекарственных растений, обладающих седативным действием 2016
  • Кролевец Александр Александрович
RU2631479C1
Способ получения нанокапсул унаби в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2624530C1
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в каррагинане 2016
  • Кролевец Александр Александрович
RU2625547C1
Способ получения нанокапсул витаминов группы В в геллановой камеди 2015
  • Кролевец Александр Александрович
RU2616514C2
Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в хитозане 2016
  • Кролевец Александр Александрович
RU2644726C1
Способ получения нанокапсул L-аргинина в геллановой камеди 2016
  • Кролевец Александр Александрович
RU2626831C2
Способ получения нанокапсул сухого экстракта шиповника 2016
  • Кролевец Александр Александрович
RU2639092C2

Иллюстрации к изобретению RU 2 640 489 C1

Реферат патента 2018 года Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция

Изобретение относится к области нанотехнологии, медицины и фармакологии. Описан способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в оболочке из геллановой камеди. При осуществлении способа АСД 2 фракция добавляют к суспензии геллановой камеди в этаноле в присутствии 0,01г Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Затем добавляют гексан, полученный осадок отфильтровывают и сушат при комнатной температуре. Соотношение ядро:оболочка составляет 1:1, или 1:3, или 3:1. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 3 ил., 4 пр.

Формула изобретения RU 2 640 489 C1

Способ получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в геллановой камеди, характеризующийся тем, что в качестве оболочки нанокапсул используют геллановую камедь, при этом АСД 2 фракция медленно добавляют к суспензии геллановой камеди в этаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем добавляют гексан, полученный осадок отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро:оболочка составляет 1:1, или 1:3, или 3:1.

Документы, цитированные в отчете о поиске Патент 2018 года RU2640489C1

СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИСЕПТИКА-СТИМУЛЯТОРА ДОРОГОВА (АСД) 2 ФРАКЦИЯ В ХИТОЗАНЕ 2014
  • Кролевец Александр Александрович
  • Сеин Олег Борисович
  • Богачев Илья Александрович
RU2566711C2
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИСЕПТИКА-СТИМУЛЯТОРА ДОРОГОВА (АСД) 2 ФРАКЦИЯ 2014
  • Кролевец Александр Александрович
  • Сеин Олег Борисович
  • Богачев Илья Александрович
RU2576239C2
ЧУЕШОВ В
И
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
СОЛОДОВНИК В.Д
"Микрокапсулирование", Москва, "Химия", 1980, стр.136
Способ получения микрокапсул 1978
  • Нижник Валерий Васильевич
  • Жартовский Владимир Михайлович
  • Баранова Анна Ивановна
SU676316A1
Способ получения микрокапсул 1976
  • Герберт Бенсон Шер
SU707510A3
МИКРОКАПСУЛА ДЛЯ ДЛИТЕЛЬНОГО ВЫСВОБОЖДЕНИЯ ФИЗИОЛОГИЧЕСКИ АКТИВНОГО ПЕПТИДА 1993
  • Хироаки Окада[Jp]
  • Яйой Иноуе[Jp]
  • Ясуаки Огава[Jp]
RU2098121C1

RU 2 640 489 C1

Авторы

Кролевец Александр Александрович

Даты

2018-01-09Публикация

2016-08-15Подача