Группа изобретений относится к области порошковой металлургии, а именно к магнитным (магнитотвердым) материалам для постоянных магнитов на основе редкоземельных элементов и к изделиям, выполненным из таких материалов, и может быть использована в авиационной промышленности.
Известен магнитный материал, содержащий железо, кобальт, бор, а также по меньшей мере один элемент, выбранный из группы тербий, диспрозий, гольмий, эрбий, тулий, который дополнительно содержит празеодим, а также по меньшей мере один элемент, выбранный из группы самарий, лантан, церий, неодим, иттрий, химический состав которого соответствует формуле, ат. %:
Недостатками указанного магнитного материала являются недостаточно высокие магнитные свойства. Например, величина остаточной магнитной индукции (BR) не превышает 8,2 кГс при наилучшем значении температурного коэффициента индукции (ТКИ)=0 %/°С. Кроме того, кольцевые магниты с радиальной текстурой, выполненные из данного магнитного материала, имеют недостаточный выход годных при механической обработке.
Известен магнитный материал, содержащий железо, кобальт, бор, а также по меньшей мере один элемент, выбранный из группы тербий, диспрозий, гольмий, эрбий, тулий, который дополнительно содержит церий, гадолиний и по меньшей мере один элемент, выбранный из группы самарий, лантан, неодим, иттрий, празеодим, химический состав которого соответствует формуле, ат. %:
Недостатками указанного магнитного материала являются недостаточно высокие магнитные свойства. Например, величина модуля температурного коэффициента индукции (ТКИ) превышает 0,022. Кроме того, кольцевые магниты с радиальной текстурой, выполненные из этого материала, имеют недостаточный выход годных при механической обработке.
Наиболее близким аналогом предлагаемой группы изобретений, принятым за прототип, является магнитный материал, содержащий железо, кобальт, бор, а также по меньшей мере один элемент, выбранный из группы тербий, диспрозий, который дополнительно содержит празеодим, гадолиний, а также по меньшей мере один элемент, выбранный из группы самарий, неодим, церий, при этом химический состав материала соответствует формуле, ат. %:
Недостатками магнитного материала, известного из прототипа, являются недостаточно высокие магнитные свойства. Например, величина остаточной индукции (BR) не превышает 8,52 кГс. Кроме того, кольцевые магниты с радиальной текстурой, выполненные из данного материала, имеют недостаточный выход годных при механической обработке.
Техническим результатом предлагаемой группы изобретений является разработка магнитного материала для постоянных магнитов и изделия, выполненного из него, обладающих повышенным значением остаточной магнитной индукции BR при величине ТКИ, близкой к нулю, и увеличение выхода годных изделий - кольцевых магнитов с радиальной текстурой (КМРТ), - выполненных из данного материала.
Для достижения поставленного технического результата предложен магнитный материал, содержащий празеодим, железо, кобальт, бор, медь и по меньшей мере один элемент, выбранный из группы, включающей гадолиний, диспрозий, самарий, церий, отличающийся тем, что он дополнительно содержит олово, при этом химический состав магнитного материала соответствует формуле, ат. долей:
где R - по меньшей мере один элемент, выбранный из группы, включающей гадолиний, диспрозий, самарий, церий;
x1=0,01-0,50;
у1=0,30-0,55;
у2=0,5-2,0;
z=0,001-0,1.
а также изделие, выполненное из данного магнитного материала.
Авторами установлено, что легирование материала системы (Pr1-xRx)-(Fe1-yCoy)-B оловом и медью в заявленных пределах не только облегчает спекание магнитов, но и понижает величину ТКИ материала (по абсолютной величине) без понижения BR за счет замещения ионами этих металлов ионов железа в основной магнитной фазе. Легирование предлагаемого материала диспрозием также приводит к понижению величины ТКИ, а легирование материала гадолинием способствует увеличению значения BR. Положительное влияние самария и/или церия, а также олова и меди в заявленных пределах связано с изменением химического состава основной магнитной фазы (Pr, R)2(Fe, Co)14B и фазового состава всего магнитного материала. Кроме того, ввиду относительно невысокой температуры плавления олова, трещины, заложенные при прессовании, в случае легирования материала оловом и медью начинают закрываться раньше, чем при легировании только медью, а при остывании магнитов и их усадке олово дольше остается расплавленным и предохраняет материал от растрескивания.
Примеры осуществления изобретения
Сплав заданного состава выплавляли в вакуумной индукционной печи. Магниты изготавливали по порошковой технологии, включающей дробление слитка до получения частиц размером менее 600 мкм, тонкий помол в защитной среде до монокристаллического размера частиц, прессование образцов в магнитном поле напряженностью 10 кЭ, спекание в вакуумной печи, шлифование полученных заготовок до размера 20×10×10 мм. Величину температурного коэффициента индукции (ТКИ) измеряли в области температур от -60 до +120°С. КМРТ шлифовали только по плоскости, поскольку на этой операции наблюдается наибольший процент брака по сколам и трещинам.
Одновременно был изготовлен магнитный материал состава, известного из прототипа. Составы и свойства предлагаемого магнитного материала и материала, известного из прототипа, приведены в таблице. В таблице строка 1: нижнее граничное значение для x1=0,01 ат. долей, нижнее граничное значение для у1=0,30 ат. долей, нижнее граничное значение для у2=0,50 ат. долей, нижнее граничное значение для z=0,001 ат. долей; строка 6: верхнее граничное значение для x1=0,50 ат. долей; верхнее граничное значение для y1=0,55 ат. долей, верхнее граничное значение для у2=0,2 ат. долей, верхнее граничное значение для z=0,1 ат. долей. В строках 2-5 представлены промежуточные значения заявленных параметров.
Предложенный магнитный материал при величине ТКИ=0%/°С позволяет повысить величину выхода годных КМРТ при шлифовке с 40% для прототипа до минимального значения 69%, т.е. в 1,7 раза, на отдельных составах этот показатель достигает 80%, т.е. в 2 раза. При этом величина BR повышается не менее чем на 0,98 кГс, по сравнению с магнитным материалом, известным из прототипа, что дает возможность без понижения точности понизить энергопотребление динамически настраиваемых гироскопов.
Применение предложенного магнитного материала и изделия, выполненного из него, позволяет повысить точность и стабильность работы динамически настраиваемых гироскопов и применять их в изделиях с автономным электропитанием.
название | год | авторы | номер документа |
---|---|---|---|
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2007 |
|
RU2368969C2 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2004 |
|
RU2280910C1 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2003 |
|
RU2244360C1 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2001 |
|
RU2202134C2 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2012 |
|
RU2500049C1 |
МАГНИТОТВЕРДЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2015 |
|
RU2604092C1 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2013 |
|
RU2537947C1 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2001 |
|
RU2212075C1 |
СПОСОБ ПОЛУЧЕНИЯ МАГНИТОТВЕРДОГО МАТЕРИАЛА | 2015 |
|
RU2596563C1 |
МАГНИТНЫЙ МАТЕРИАЛ | 1998 |
|
RU2136069C1 |
Группа изобретений относится к области порошковой металлургии, а именно к магнитным (магнитотвердым) материалам для постоянных магнитов на основе редкоземельных элементов и к изделиям, выполненным из таких материалов, и может быть использована в авиационной промышленности. Предложен магнитный материал, содержащий празеодим, железо, кобальт, бор, медь и по меньшей мере один элемент, выбранный из группы, включающей гадолиний, диспрозий, самарий, церий, отличающийся тем, что он дополнительно содержит олово, при этом химический состав магнитного материала соответствует формуле в ат. долях: где R - по меньшей мере один элемент, выбранный из группы, включающей гадолиний, диспрозий, самарий, церий; x1=0,01-0,50; у1=0,30-0,55; у2=0,5-2,0; z=0,001-0,1. Магнитный материал обеспечивает повышение значения остаточной магнитной индукции BR при величине температурного коэффициента индукции (ТКИ), близкой к нулю, а также увеличение выхода годных изделий - кольцевых магнитов с радиальной текстурой (КМРТ), выполненных из данного материала, что является техническим результатом изобретения. 2 н.п. ф-лы. 1 табл.
1. Магнитный материал, содержащий празеодим, железо, кобальт, бор, медь и по меньшей мере один элемент, выбранный из группы, включающей гадолиний, диспрозий, самарий, церий, отличающийся тем, что он дополнительно содержит олово, при этом химический состав магнитного материала соответствует формуле, ат. долей:
(Pr1-x1 Rx1)11,5-16(Fe1-y1 Coy1)ост.(SnzCu1-z)y2 B6-20,
где R - по меньшей мере один элемент, выбранный из группы, включающей гадолиний, диспрозий, самарий, церий;
x1=0,01-0,50;
y1=0,30-0,55;
y2=0,5-2,0;
z=0,001-0,1.
2. Изделие из магнитного материала, отличающееся тем, что оно выполнено из материала по п. 1.
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2007 |
|
RU2368969C2 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2004 |
|
RU2280910C1 |
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2003 |
|
RU2244360C1 |
Устройство для управления широтно-импульсным преобразователем | 1981 |
|
SU1026279A1 |
CN 101872668 A, 27.10.2010 | |||
WO 2005066980 A2, 21.07.2005 | |||
Предохранительный клапан | 1989 |
|
SU1749599A1 |
Авторы
Даты
2016-03-27—Публикация
2014-10-29—Подача