МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО Российский патент 2005 года по МПК H01F1/57 C22C38/10 

Описание патента на изобретение RU2244360C1

Изобретение относится к области порошковой металлургии, в частности, к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа.

Известен магнитный материал на основе празеодима, железа, кобальта, алюминия, бора следующего химического состава, ат.%:

Pr15Fe62,5Co16Al1B5,5 Jiang S.Y. and other. Magnetic properties of

R-Fe-B and R-Fe-Co-Al-B magnets (R=Pr and

Nd), J. Appl. Phys., 1988, V.64, №10,

р.5510-5512.

Недостатками известного магнитного материала являются недостаточно высокие магнитные свойства: величина коэрцитивной силы (HCI) равняется 9,6 кЭ, при этом величина температурного коэффициента индукции (ТКИ) равняется -0,085%/° С (в области 20÷ 150° С).

Изделиями из известного магнитного материала являются, например, призмы, цилиндры, кольцевые магниты с радиальной либо аксиальной текстурой и т.д. Недостатками изделий являются:

- недостаточно высокое значение величины HCI, что накладывает ограничения на геометрические размеры изделий, особенно кольцевых магнитов с радиальной текстурой;

- недостаточно высокая температурная стабильность материала (высокое значение ТКИ, по абсолютной величине), что ограничивает область применения изделий из него в технике.

Известен магнитный материал на основе неодима, железа, кобальта, бора следующего химического состава, ат.%:

Nd15(Fe1-xСох)77В8, где x=0÷ 0,2 Sagawa M. and other. Permanent

magnet materials based

on the rare earth-iron-boron

tetragonal compounds,

IEEE Trans. on Magnet.,

1984, V.MAG-20, №5,

p.1584-1589.

Недостатками известного магнитного материала являются:

недостаточно высокие магнитные свойства: величина HCI не превышает 10,3 кЭ, а величина ТКИ≤ -0,074%/°С.

Изделиями из известного магнитного материала являются, например, призмы, цилиндры, кольцевые магниты с радиальной либо аксиальной текстурой и т.д. Недостатками изделий являются:

- недостаточно высокое значение величины HCI, что накладывает ограничения на геометрические размеры изделий, особенно кольцевых магнитов с радиальной текстурой;

- недостаточно высокая температурная стабильность материала (высокое значение ТКИ, по абсолютной величине), что ограничивает область применения изделий из него в технике.

Наиболее близким аналогом, взятым за прототип, является магнитный материал, содержащий железо, кобальт, бор, неодим, тербий, имеющий состав, соответствующий формуле, ат.%:

(Nd1-х1-х2Тbх1Rx2)14-17(Fe1-y1Coy1)75-80Ту2В6-8,

где R - по меньшей мере один элемент, выбранный из группы диспрозий (Dy), гольмий (Но), эрбий (Еr), тулий (Тm), а Т - по меньшей мере один элемент, выбранный из группы алюминий (Аl), галлий (Ga), титан (Тi), ниобий (Nb), молибден (Мо), причем

х1+х2=0,1-0,99

х1/х2≥ 0,10

у1=0,2-0,55

у2=0,01-10 Патент РФ, №2136069.

Недостатками магнитного материала-прототипа являются:

недостаточно высокие магнитные свойства. Например, при величине ТКИ в диапазоне 0÷ -0,02%/° С (29÷ 100° С), величина остаточной индукции (ВR) не превышает 6 кГс.

Изделиями из магнитного материала-прототипа при величине ТКИ=0÷ -0,02%/° С являются любые типоразмеры магнитов (например, призмы, цилиндры, кольца с аксиальной текстурой и т.д.), за исключением кольцевых магнитов с радиальной текстурой (КМРТ). Недостатками изделий являются:

- невозможность изготовления кольцевых магнитов с радиальной текстурой с величиной ТКИ=0÷ -0,02%/° С. При шлифовке таких КМРТ брак составляет 100%.

Технической задачей изобретения является увеличение магнитных свойств материала при одновременном увеличении температурной стабильности; увеличение выхода годных магнитов при шлифовке и расширение номенклатуры выпускаемых изделий, в частности, изготовление кольцевых магнитов с радиальной текстурой с величиной ТКИ=0÷ -0,02%/° С.

Техническая задача достигается тем, что магнитный материал, содержащий железо, кобальт, бор, а также по меньшей мере один элемент, выбранный из группы тербий (Тb), диспрозий (Dy), гольмий (Но), эрбий (Еr), тулий (Тm), который дополнительно содержит празеодим, а также по меньшей мере один элемент, выбранный из группы самарий (Sm), лантан (La), церий (Се), неодим (Nd), иттрий (Y), при этом химический состав соответствует формуле, ат.%:

(Pr1-x1-x2R1x1

R2x2
)14-20(Fe1-y1Coy1)ocт.В4-10,

где R1 - по меньшей мере один элемент, выбранный из группы Тb, Dy, Но, Еr, Tm, R2 - по меньшей мере один элемент, выбранный из группы Sm, La, Се, Nd, Y;

х1=0,2-0,5

у1=0,2-0,3

x1/x25

Магнитный материал дополнительно содержит по меньшей мере один элемент, выбранный из группы алюминий (Аl), галлий (Ga), титан (Ti), ниобий (Nb), молибден (Мо), медь (Сu), при этом химический состав соответствует формуле, ат.%:

(Pr1-x1-x2R1x1

R2x2
)14-20(Fe1-y1Coy1)ocт.Ту2 В4-10,

где Т - по меньшей мере один элемент, выбранный из группы Аl, Ga, Ti, Nb, Мо, Сu;

у2=0,001-6

Изделие, выполненное из указанного выше магнитного материала.

Авторами установлено, что в системе Pr-R-Fe-Co-B, где R - тяжелый редкоземельный металл, содержание основной магнитной фазы (Рr, R)2 (Fe, Co)14В примерно в 2 раза выше, чем в системе Nd-R-Fe-Co-B (при одинаковом содержании остальных легирующих элементов), что и приводит к повышению величины ВR материала при заданном значении ТКИ. Установлено также, что в системе Pr-R-Fe-Co-B, при содержании Со в заявленных пределах, отсутствует фаза (Рr, R)1(Fe, Co)4B1. Указанная фаза приводит к уменьшению величин ВR и HCI магнитов системы Nd-R-Fe-Co-В. Установлено, что присутствие фазы PЗM1 (Fe,Co)4B1 значительно уменьшает прочность магнитов, а при ее содержании выше некоторого предела не позволяет изготавливать кольцевые магниты с радиальной текстурой. Установлено, что положительное влияние Sm, La, Ce, Nd, Y, а также Al, Ga, Ti, Nb, Mo, Сu в заявленных пределах связано с изменением химического состава фаз, а также фазового состава материала.

Пример осуществления.

Сплав заданного состава выплавляли в вакуумной индукционной печи. Магниты изготавливали по порошковой технологии, включающей: дробление слитка до размера менее 600 мкм, тонкий помол в защитной среде до монокристаллического размера частиц, прессование образцов-свидетелей и образцов кольцевых магнитов с радиальной текстурой в магнитном поле 10 и 3,5 кЭ, соответственно, спекание в вакуумной печи при температуре 1080-1140° С. Полученные заготовки образцов-свидетелей шлифовали до размера 10× 10× 10 мм, а заготовки кольцевых магнитов с радиальной текстурой до размера 16,5× 12,2× 3,0 мм. Величину ТКИ измеряли в области 20-100° С.

Составы и свойства предлагаемого магнитного материала и материала-прототипа приведены в таблице. В примерах 1, 2 приведены граничные значения составов. В примерах 3, 4, 5 - средние значения составов. Кольцевые магниты с радиальной текстурой указанного выше размера, были изготовлены также из материала соответствующего составу материала-прототипа. Как видно из таблицы, КМРТ из материала-прототипа изготовить невозможно (брак при шлифовке составляет 100%). При этом, как видно из таблицы, магнитные свойства предлагаемого материала значительно выше, чем у прототипа: величина br выше не менее, чем на 23%, а величина HCl - на 27%. Кроме того, выход годных КМРТ из предлагаемого материала не ниже 70%, в то время как все радиальные кольца из материала-прототипа при шлифовке разрушаются.

Таким образом, предложенный магнитный материал при величине ТКИ=0÷ -0,02%/° С позволяет расширить номенклатуру выпускаемых изделий, включая кольцевые магниты с радиальной текстурой, при одновременном увеличении их магнитных характеристик.

Применение предложенного магнитного материала позволяет повысить точность и стабильность работы навигационного оборудования и систем авиационной автоматики, а также производить магниты любых типоразмеров.

Таблица
Составы и свойства предлагаемого магнитного материала и материала-прототипа.
Предлагаемый материалСостав магнитного материала, ат.%Магнитные свойстваВыход годных KMPT, %   ВR, кГсHci, кЭТКИ, %/° C  1(Рr0,76Dy0,17Tb0,03Nd0,02Ce0,01Sm0,01)15(Fe0,7Со0,03)ост.Cu5Ti1B97,514,3-0,0275 2(Pr0,40Dy0,45Ho0,05Nd0,01Sm0,09)17,5(FC0,8Co0,2)ост.Сr0,0005Аl0,0005B57,420-0,0275 3(Рr0,460,45Nd0,09)15,6(Fe0,72Co0,28)oст.Сu2,6Ti0,01B5,28,221070 4(Pr0,56Dy0,37Tb0,01Ce0,04Sm0,02)14,9(Fe0,75CO0,25)ocт.Cu1,6Al0,2Ti0,28Nb0,25B6,2916,3-0,0275 5(Рr0,39Dy0,41Tb0,09Но0,01Nd0,04La0,01Sm0,05)15,4(Fe0,75Co0,25)ост.Сu3Ti0,07В5,67,919,2-0,01477Прототип(Nd0,48Dy0,42Тb0,10)16,0(Fe0,65CO0,35)ост.Аl0,36В7,4611,3-0,020

Похожие патенты RU2244360C1

название год авторы номер документа
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2007
  • Каблов Евгений Николаевич
  • Пискорский Вадим Петрович
  • Валеев Руслан Анверович
  • Сычев Игорь Викторович
  • Терешина Ирина Семеновна
  • Белоусова Валерия Александровна
RU2368969C2
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2001
  • Каблов Е.Н.
  • Пискорский В.П.
  • Брук Л.А.
RU2202134C2
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2004
  • Каблов Евгений Николаевич
  • Пискорский Вадим Петрович
  • Валеев Руслан Анверович
  • Макаров Евгений Антонович
  • Сычев Игорь Викторович
RU2280910C1
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2013
  • Каблов Евгений Николаевич
  • Пискорский Вадим Петрович
  • Валеев Руслан Анверович
  • Бузенков Александр Владимирович
RU2537947C1
МАГНИТНЫЙ МАТЕРИАЛ 1998
  • Савич А.Н.
  • Пискорский В.П.
RU2136069C1
МАГНИТОТВЕРДЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2015
  • Каблов Евгений Николаевич
  • Оспенникова Ольга Геннадиевна
  • Пискорский Вадим Петрович
  • Валеев Руслан Анверович
  • Резчикова Инесса Игоревна
  • Королев Дмитрий Викторович
  • Бузенков Александр Владимирович
  • Сульянова Елена Александровна
  • Чередниченко Игорь Валерьевич
  • Моргунов Роман Борисович
RU2604092C1
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2001
  • Каблов Е.Н.
  • Лукин В.И.
  • Пискорский В.П.
  • Брук Л.А.
  • Константинов Д.А.
  • Сорокин С.А.
  • Валеев Р.А.
  • Коврижкин О.И.
RU2212075C1
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2012
  • Бурханов Геннадий Сергеевич
  • Лукин Александр Александрович
  • Перевощиков Павел Сергеевич
  • Сергеев Сергей Владимирович
  • Кольчугина Наталья Борисовна
  • Клюева Наталия Евгеньевна
  • Дормидонтов Андрей Гурьевич
RU2500049C1
МАГНИТНЫЙ МАТЕРИАЛ ДЛЯ ПОСТОЯННЫХ МАГНИТОВ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Каблов Евгений Николаевич
  • Оспенникова Ольга Геннадиевна
  • Пискорский Вадим Петрович
  • Валеев Руслан Анверович
  • Резчикова Инесса Игоревна
  • Королёв Дмитрий Викторович
  • Бузенков Александр Владимирович
RU2578211C1
СПОСОБ ПРОИЗВОДСТВА МАГНИТОВ ИЗ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ 2011
  • Сёдзи Тецуя
  • Миямото Норитака
  • Омура Синья
  • Итигодзаки Дайсюкэ
  • Ямамото Такеси
RU2538272C2

Реферат патента 2005 года МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Изобретение относится к порошковой металлургии, в частности к магнитным материалам для постоянных магнитов. Предложен магнитный материал. Химический состав материала соответствует формуле

(Pr1-x1-x2R1x1

R2x2
)14-20(Fe1-y1Coy1)ocт.В4-10, где R - по меньшей мере один элемент, выбранный из группы Tb, Dy, Но, Er, Tm, R2 - по меньшей мере один элемент, выбранный из группы Sm, La, Се, Nd, Y; x1=0,2-0,5; y1=0,2-0,3; х1/х2≥ 5. Материал может дополнительно содержать по крайней мере один элемент, выбранный из группы, включающей Al, Ga, Ti, Nb, Mo, Cu. Техническим результатом является увеличение магнитных свойств при одновременном увеличении температурной стабильности. Использование предложенного магнитного материала позволит повысить точность и стабильность работы навигационного оборудования и систем авиационной автоматики. 2 н. и 1 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 244 360 C1

1. Магнитный материал, содержащий железо, кобальт, бор, а также по меньшей один элемент, выбранный из группы тербий, диспрозий, гольмий, эрбий, тулий, отличающийся тем, что он дополнительно содержит празеодим, а также по меньшей мере один элемент, выбранный из группы самарий, лантан, церий, неодим, иттрий, при этом химический состав соответствует формуле, ат.%:

(Pr1-x1-x2R1x1

R2x2
)l4-20 (Fe1-y1Coy1)ocт. В4-10,

где R1 - по меньшей мере один элемент, выбранный из группы Tb, Dy, Но, Еr, Tm,

R2 - по меньшей мере один элемент, выбранный из группы Sm, La, Ce, Nd, Y;

x1=0,2-0,5;

у1=0,2-0,3;

х1/х2≥5.

2. Магнитный материал по п.1, отличающийся тем, что он дополнительно содержит по меньшей мере один элемент, выбранный из группы алюминий, галлий, титан, ниобий, молибден, медь, при этом химический состав соответствует формуле, ат.%:

(Pr1-x1-x2R1x1

R2x2
)14-20(Fe1-y1Coy1)ocт.Ту2В4-10,

где Т - по меньшей мере один элемент, выбранный из группы Al, Ga, Ti, Nb, Мо, Сu;

у2=0,001-6.

3. Изделие из магнитного материала, отличающееся тем, что оно выполнено из магнитного материала по любому из пп.1 или 2.

Документы, цитированные в отчете о поиске Патент 2005 года RU2244360C1

МАГНИТНЫЙ МАТЕРИАЛ 1998
  • Савич А.Н.
  • Пискорский В.П.
RU2136069C1
МАГНИТНЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2001
  • Каблов Е.Н.
  • Пискорский В.П.
  • Брук Л.А.
RU2202134C2
МАГНИТНЫЙ МАТЕРИАЛ ДЛЯ ПОСТОЯННЫХ МАГНИТОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1998
  • Савич А.Н.
  • Пискорский В.П.
RU2136068C1
US 5230749 A, 27.07.1993
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1

RU 2 244 360 C1

Авторы

Каблов Е.Н.

Пискорский В.П.

Брук Л.А.

Валеев Р.А.

Макаров Е.А.

Сычев И.В.

Даты

2005-01-10Публикация

2003-11-26Подача