СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ БРОНХОЛЕГОЧНЫХ ЗАБОЛЕВАНИЙ Российский патент 2016 года по МПК G01N33/497 

Описание патента на изобретение RU2578445C1

Изобретение относится к области медицины, в частности пульмонологии, и может найти применение для скрининговой диагностики хронической обструктивной болезни легких (ХОБЛ) и бронхиальной астмы.

Известен способ дифференциальной диагностики бронхиальной астмы и ХОБЛ на основе анализа профиля среднелетучих органических соединений в конденсате выдыхаемого человеком воздуха. Получение конденсата требует определенного времени, специального оборудования и условий хранения, вследствие чего происходит увеличение времени, необходимого для проведения анализа. Кроме того, для получения конденсата необходимо большое количество выдыхаемого воздуха, что не всегда могут обеспечить пациенты на тяжелых стадиях болезни [1].

Для диагностики ХОБЛ используется хромато-масс-спектрометрия с целью определения летучих органических соединений в выдыхаемом воздухе [2, 3]. Ограничения в применении этого метода связаны с искажением состава пробы, с проблемами селективности детектирования и идентификации спектров, а также следует отметить, что время анализа достаточно велико, а сам прибор достаточно сложный, громоздкий и дорогостоящий [4].

Известен способ экспресс-диагностики бронхолегочных заболеваний, выбранный в качестве прототипа с помощью анализа спектра поглощения выдыхаемого воздуха пациента. Данный метод предполагает сравнение спектра поглощения выдыхаемого обследуемым пациентом воздуха со спектрами поглощения выдыхаемого воздуха верифицированных групп пациентов с различными бронхолегочными заболеваниями. Таким образом, для диагностики болезни процедуру сравнения необходимо повторять несколько раз, что требует дополнительных временных затрат [5]. Кроме того, данный метод предполагает диагностику одного заболевания.

Новый технический результат - расширение области применения способа для скрининговой диагностики ХОБЛ и бронхиальной астмы.

Для достижения нового технического результата в способе дифференциальной диагностики бронхолегочных заболеваний, включающем регистрацию и анализ спектра поглощения выдыхаемого воздуха пациента, при которой проводят предварительное измерение спектра поглощения выдыхаемого воздуха верифицированных групп пациентов с бронхолегочными заболеваниями, представляющими диагностический интерес, вычисляют среднее значение квадрата расстояний Махаланобиса от спектра поглощения выдыхаемого воздуха каждого члена группы до спектров поглощения выдыхаемого воздуха остальных членов группы, затем определяют среднее значение от указанных средних значений и доверительный интервал и при значении в интервале от 1,28 до 2,29 диагностируют ХОБЛ, а при значении более 2,29 диагностируют бронхиальную астму

Способ осуществляют следующим образом:

В основе предлагаемого метода лежит принцип сравнения спектров поглощения выдыхаемого воздуха референтной (эталонной) группы и пациентов с ХОБЛ и с бронхиальной астмой. Сравнение спектров поглощения выдыхаемого воздуха производится путем расчета среднего значения квадрата расстояния Махаланобиса от спектра поглощения пробы выдыхаемого воздуха обследуемого пациента до спектров поглощения выдыхаемого воздуха пациентов референтной группы [6, 7]. Расстояние Махаланобиса позволяет количественно оценить близость изучаемого объекта в пространстве признаков к референтному состоянию. В качестве объекта выступает скан спектра поглощения выдыхаемого воздуха обследуемого человека, а в качестве референтного состояния объекта выступает совокупность сканов спектров поглощения выдыхаемого воздуха здоровых людей [6]. Расчеты проводились в двух спектральных диапазонах, соответствующих 10Р- и 10R-ветвям генерации СО2-лазера, обозначенных как первый и второй диапазоны соответственно. В каждом диапазоне для каждого пациента находились средние значения квадрата расстояния Махалонобиса, обозначенные как ИО1 и ИО2 соответственно [8]. При проведении расчетов ИО использовался пакет программ StatSys [9]. После расчетов ИО была проведена статистическая обработка данных. Полученные данные не подчиняются закону нормального распределения признаков, поэтому рассчитывают медиану и квартели (25%-75%). После чего проводят ROC-анализ, который позволяет найти те диагностические значения ИО, при которых точность метода достигала своего максимума.

Предлагаемый способ основан на анализе результатов клинических исследований:

Были исследованы пробы выдыхаемого воздуха 20 здоровых добровольцев, как курящих, так и некурящих. Они составили референтную группу. Затем был произведен набор проб выдыхаемого воздуха пациентов двух групп сравнения. В первую группу вошли 31 пациент с верифицированным диагнозам ХОБЛ. Вторая группа сравнения представлена 16 пациентами с бронхиальной астмой. У каждого пациента осуществляли забор проб выдыхаемого воздуха в утренние часы (08:00-09:00) в стеклянную пробирку объемом 10 мл с плотной ватно-марлевой пробкой.

Воздух из пробирки с помощью катетера напускали в ячейку газоанализатора, после чего производили регистрацию скана спектра поглощения - спектра поглощения пробы на длинах волн излучения лазера. Зарегистрированные сканы сохраняли в виде файлов. Селекцию отдельных газов в данном случае не проводили [6]. Для уменьшения погрешности у каждого участника исследования бралось три пробы последовательно, и спектр каждой из них регистрировался пятикратно. Далее, для каждого участника исследования на основе 15 сканов спектра выдыхаемого воздуха были рассчитаны средние значения и доверительные интервалы ИО1 и ИО2 в диапазоне частот 931-953 см-1 и 963-984 см-1 соответственно. Для проведения статистического анализа для референтной группы и для двух групп сравнения на основании средних значений ИО1 и ИО2 пациентов были рассчитаны медиана и квартели (табл. 1). С использованием коэффициента Манна-Уитни был проведен попарный сравнительный анализ ИО1 и ИО2 референтной группы, представленной здоровыми лицами, и каждой из групп сравнения в отдельности (табл. 1). Уровень статистической значимости (p-уровень) был выбран менее 0,05.

Результаты сравнительного попарного анализа показали, что ИО здоровых лиц и пациентов с бронхиальной астмой и ХОБЛ различаются в диапазоне 931-953 см-1, тогда как в диапазоне 963-984 см-1 статистически значимые различия были получены только при сравнении ИО здоровых лиц и пациентов с бронхиальной астмой (табл. 1). ИО пациентов с ХОБЛ и с бронхиальной астмой различались как в первом, так и во втором диапазоне.

Для дальнейших расчетов были использованы только значения ИО в диапазоне 931-953 см-1, так как в этом диапазоне были получены статистически значимые различия между всеми тремя группами пациентов.

Был проведен ROC-анализ (Receiver Operating Characteristic analysis), который позволил определить то значение ИО, при котором выявляется максимальное количество больных и минимальное количество неверно диагностированных случаев.

Разброс ИО1 пациентов внутри каждой исследуемой группы достаточно большой, поэтому были выбраны наиболее информативные участки. После этого путем перебора было найдено то значение ИО1, при котором разделение обследуемых пациентов и здоровых лиц достигало наиболее статистически приемлемых значений чувствительности и специфичности. Таблица 2 иллюстрирует выбор значений ИО1 при сравнении группы здоровых и пациентов с бронхиальной астмой. В таблице 3 представлены данные, касающиеся сравнения здоровых и пациентов с ХОБЛ, а в таблице 4 данные, полученные при сравнении пациентов с бронхиальной астмой и ХОБЛ (табл. 2, 3, 4).

Таком образом, при сравнении ИО1 референтной группы и пациентов с ХОБЛ и с бронхиальной астмой были получены пороговые значения ИО1, позволяющие с достаточной чувствительностью и специфичностью отличать пациентов с ХОБЛ и бронхиальной астмой от здоровых лиц (табл. 5).

Проанализировав данные, представленные в таблице 5, мы составили диагностические промежутки, позволяющие с достаточной точностью предположить у обследуемого пациента ХОБЛ или бронхиальную астму при сравнении его спектров поглощения выдыхаемого воздуха со спектрами поглощения референтной группы (схема 1).

Таким образом, если значения ИО1 обследуемого пациента находятся в пределах от 1,28 до 2,29, то в 70% случаев у него диагностируется ХОБЛ. Если ИО1 более 2,29, то с точностью 75% у пациента будет выявлена бронхиальная астма.

1. Клинический пример:

Пациент Л. 73 года, мужчина

Предварительный диагноз: ХОБЛ III стадии, обострение? Эндогенная бронхиальная астма средней степени тяжести?

Проведено исследование согласно предлагаемому способу. При проведении диагностики указанным методом у данного пациента было забрано 3 пробирки с выдыхаемым воздухом, объемом 10 мл каждая. Каждая проба воздуха была проанализирована при помощи лазерного оптико-акустического газоанализатора ILPA-1, получено 15 сканов спектра поглощения выдыхаемого воздуха данного пациента. После этого произведено сравнение сканов спектров поглощения выдыхаемого воздуха пациента со сканами спектров поглощения выдыхаемого воздуха референтной группы и рассчитано значение ИО1, которое у данного пациента оказалось равным 2,02. Это значение, согласно предлагаемому способу, соответствовало диагнозу ХОБЛ. В последующем данный диагноз был подтвержден при проведении стандартных диагностических тестов (спирографии с бронходилатационным тестом).

Окончательный диагноз: ХОБЛ III стадии, обострение бронхолегочной инфекции.

Клинический пример 2:

Пациентка К. 64 года, женщина

Предварительный диагноз: ХОБЛ III стадии, обострение. Бронхиальная астма смешанного генеза, обострение.

Проведено исследование согласно предлагаемому способу. У данной пациентки было взято 3 пробы выдыхаемого воздуха объемом 10 мл каждая. Каждая проба воздуха была проанализирована при помощи лазерного оптико-акустического газоанализатора ILPA-1, получено 15 сканов спектра поглощения выдыхаемого воздуха данной пациентки. После этого произведено сравнение сканов спектров поглощения выдыхаемого воздуха пациентки со сканами спектров поглощения выдыхаемого воздуха референтной группы и рассчитано значение ИО1, которое составило 4,33, что согласно предлагаемому способу соответствует диагнозу бронхиальная астма. Стандартными методами у данной пациентки подтверждена бронхиальная астма.

Окончательный диагноз: Бронхиальная астма смешанного генеза средней степени тяжести, обострение

Таким образом, предлагаемый способ, заключающийся в анализе спектров поглощения выдыхаемого воздуха здоровых лиц и нескольких групп пациентов с верифицированными заболеваниями легких позволил нам найти параметры, на основании которых можно поставить предварительный диагноз, проведя процедуру сравнения спектров только один раз, и тем самым сократить время обследования.

Источники информации

1. Анохина Т.Н. Новые биомаркеры - среднелетучие метаболиты в конденсате выдыхаемого воздуха при бронхиальной астме и хронической обструктивной болезни легких: автореф. дис. … канд. мед. наук. ФГУ «НИИ пульмонологии» ФМБА России, М., 2012.

2. A profile of volatile organic compounds in breath discriminates COPD patients from controls / Van Berkel J.J.B.N., Dallinga J.W., Möller G.M., Godschalk R.W.L., Moonen E.J., Wouters E.F.M., Van Schooten F.J. // Respiratory Medicine. - 2010. - V. 104. №4. - P. 557-563.

3. Fens Ν., De Nijs S.B., Peters S., Dekker T., Knobel H.H., Vink T.J., Willard N.P., Zwinderman A.H., Krouwelsf F.H., Janssen H-G., Lutter R.., Sterk P.J. Exhaled air molecular profiling in relation to inflammatory subtype and activity in COPD // European Respiratory Journal. 2011. V. 38. No. 6. P. 1301-1309.

4. Степанов E.B. Методы высокочувствительного газового анализа молекул-биомаркеров в исследованиях выдыхаемого воздуха // Труды института общей физики им. А.М. Прохорова. 2005. Т. 61. С. 5-47.

5. Патент РФ 2486522 РФ. Способ экспресс-диагностики бронхолегочных заболеваний / Кистенев Ю.В., Никифорова О.Ю., Фокин В.А.

6. Агеев Б.Г., Кистенев Ю.В., Никифорова О.Ю., Никотин Е.С., Никотина Г.С., Фокин В.А. Применение интегральной оценки состояния объекта для анализа выдыхаемого воздуха и диагностики заболеваний человека // Оптика атмосферы и океана. - 2010. - 23, №7. - С. 570-579.

7. Bukreeva Е.В., Bulanova А.А., Kistenev Y.V., Kuzmin D.A., Tuzikov S.A., Yumov E.L. A nalysis of the absorption spectra of gas emission of patients with lung cancer and chronic obstructive pulmonary disease by laser optoacoustic spectroscopy // Proc. SPIE 8699, Saratov Fall Meeting 2012: Optical Technologies in Biophysics and Medicine XIV; and Laser Physics and Photonics XIV, 86990K (February 26, 2013).

8. Фокин В.А. Модель согласования биомедицинских данных и комплекс программ для интегральной оценки состояния биосистем: автореф. дис. … д-р. техн. наук. Томский гос. университет. Томск, 2009.

9. Свид. №2006614010 РФ. Программа для ЭВМ «StatSys». В.А. Фокин, И.С. Хакимов, О.Ю. Никифорова. Заявка №2006613281. Заявлено 29.09.2006. Опубл. 22.11.2006.

Таблица 1. Сравнение интегральных оценок здоровых добровольцев и пациентов с бронхиальной астмой, ХОБЛ

Таблица 2. Значения чувствительности (Se) и специфичности (Sp) метода при сравнении ИО1 здоровых лиц и пациентов с бронхиальной астмой

Таблица 3. Значения чувствительности (Se) и специфичности (Sp) метода при сравнении ИО1 здоровых лиц и пациентов с ХОБЛ

Таблица 4. Значения чувствительности (Se) и специфичности (Sp) метода при сравнении ИО1 пациентов с бронхиальной астмой и пациентов с ХОБЛ

Таблица 5. Диагностические значения ИО1. Чувствительность и специфичность методики

Похожие патенты RU2578445C1

название год авторы номер документа
СПОСОБ ЭКСПРЕСС-ДИАГНОСТИКИ БРОНХО-ЛЕГОЧНЫХ ЗАБОЛЕВАНИЙ 2011
  • Кистенев Юрий Владимирович
  • Никифорова Ольга Юрьевна
  • Фокин Василий Александрович
RU2486522C2
СПОСОБ ЭКСПРЕСС-ДИАГНОСТИКИ ДИСБАКТЕРИОЗА ПОЛОСТИ РТА 2009
  • Кистенев Юрий Владимирович
  • Красноженов Евгений Павлович
  • Никотин Евгений Сергеевич
  • Фокин Василий Александрович
RU2433400C2
Способ диагностики аллергической бронхиальной астмы 2021
  • Сенников Сергей Витальевич
  • Жукова Юлия Владимировна
  • Альшевская Алина Анатольевна
  • Киреев Федор Дмитриевич
  • Лопатникова Юлия Анатольевна
  • Демина Дарья Владимировна
  • Гладких Виктор Сергеевич
RU2780687C1
СПОСОБ НЕИНВАЗИВНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ ОРГАНОВ ДЫХАТЕЛЬНОЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2021
  • Чойнзонов Евгений Лхамацыренович
  • Кульбакин Денис Евгеньевич
  • Чернов Владимир Иванович
  • Родионов Евгений Олегович
  • Сачков Виктор Иванович
  • Обходская Елена Владимировна
  • Обходский Артем Викторович
  • Попов Александр Сергеевич
  • Кузнецов Сергей Геннадьевич
RU2760396C1
СПОСОБ РАННЕЙ ДИАГНОСТИКИ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ 2010
  • Черногорюк Георгий Эдинович
  • Рослякова Елена Петровна
  • Михайлова Алла Александровна
  • Варвянская Наталья Владимировна
  • Санжаровская Мария Сергеевна
  • Антипов Сергей Иванович
  • Федосенко Сергей Вячеславович
  • Фисенко Анна Юрьевна
  • Кириллова Наталья Александровна
RU2425369C1
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ХРОНИЧЕСКОЙ ОБСТРУКТИВНОЙ БОЛЕЗНИ ЛЕГКИХ И БРОНХИАЛЬНОЙ АСТМЫ 2011
  • Кривоногов Николай Георгиевич
  • Лишманов Юрий Борисович
  • Завадовский Константин Валерьевич
  • Агеева Татьяна Сергеевна
  • Тетенев Федор Федорович
  • Дубоделова Анна Валентиновна
RU2483677C1
СПОСОБ ПРОГНОЗИРОВАНИЯ НЕКОНТРОЛИРУЕМОГО ТЕЧЕНИЯ ТЯЖЕЛОЙ БРОНХИАЛЬНОЙ АСТМЫ 2011
  • Селиванова Полина Александровна
  • Старовойтова Елена Александровна
  • Краснобаева Лариса Александровна
  • Огородова Людмила Михайловна
  • Кистенев Юрий Владимирович
  • Фокин Василий Александрович
  • Куликов Евгений Сергеевич
RU2470582C1
Способ диагностики ранних проявлений респираторного аллергоза у детей в условиях избыточной контаминации алюминием 2018
  • Долгих Олег Владимирович
  • Зайцева Нина Владимировна
  • Аликина Инга Николаевна
  • Кривцов Александр Владимирович
  • Гусельников Максим Анатольевич
  • Мазунина Алена Александровна
  • Никоношина Наталья Алексеевна
  • Челакова Юлия Александровна
  • Мухачева Елена Александровна
RU2693471C1
Способ диагностики хронического аспергиллёза лёгких 2023
  • Николаева Наталия Георгиевна
  • Шадривова Ольга Витальевна
  • Борзова Юлия Владимировна
  • Григорьев Степан Григорьевич
  • Ицкович Ирина Эммануиловна
  • Климко Николай Николаевич
RU2814389C1
Способ диагностики морфофункциональных нарушений миокарда у детей старше 5 лет с бронхолегочными заболеваниями, ассоциированными с воздействием бензола, толуола, фенола и формальдегида 2016
  • Зайцева Нина Владимировна
  • Устинова Ольга Юрьевна
  • Маклакова Ольга Анатольевна
  • Ивашова Юлия Анатольевна
RU2612861C1

Реферат патента 2016 года СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ БРОНХОЛЕГОЧНЫХ ЗАБОЛЕВАНИЙ

Изобретение относится к области медицины, в частности пульмонологии, и предназначено для скрининговой диагностики хронической обструктивной болезни легких (ХОБЛ) и бронхиальной астмы. Способ включает регистрацию выдыхаемого воздуха пациента и его анализ, для чего проводят регистрацию и анализ спектра поглощения выдыхаемого воздуха пациента, причем предварительно проводят измерения спектра поглощения выдыхаемого воздуха верифицированных групп пациентов с бронхолегочными заболеваниями, представляющими диагностический интерес, вычисляют средние значения квадрата расстояний Махаланобиса от спектра поглощения выдыхаемого воздуха каждого члена группы до спектров поглощения выдыхаемого воздуха остальных членов группы. Затем находят среднее значение от указанных средних значений и доверительный интервал. При значении в интервале от 1,28 до 2,29 диагностируют ХОБЛ, а при значении более 2,29 диагностируют бронхиальную астму. 5 табл., 2 пр.

Формула изобретения RU 2 578 445 C1

Способ дифференциальной диагностики бронхолегочных заболеваний, включающий регистрацию и анализ спектра поглощения выдыхаемого воздуха пациента, при этом проводят предварительное измерение спектра поглощения выдыхаемого воздуха верифицированных групп пациентов с бронхолегочными заболеваниями, представляющими диагностический интерес, вычисляют среднее значение квадрата расстояний Махаланобиса от спектра поглощения выдыхаемого воздуха каждого члена группы до спектров поглощения выдыхаемого воздуха остальных членов группы, затем определяют среднее значение от указанных средних значений и доверительный интервал, отличающийся тем, что при значении в интервале от 1,28 до 2,29 диагностируют ХОБЛ, а при значении более 2,29 диагностируют бронхиальную астму.

Документы, цитированные в отчете о поиске Патент 2016 года RU2578445C1

СПОСОБ ЭКСПРЕСС-ДИАГНОСТИКИ БРОНХО-ЛЕГОЧНЫХ ЗАБОЛЕВАНИЙ 2011
  • Кистенев Юрий Владимирович
  • Никифорова Ольга Юрьевна
  • Фокин Василий Александрович
RU2486522C2
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ БРОНХИАЛЬНОЙ АСТМЫ И ОБЛИТЕРИРУЮЩЕГО БРОНХИОЛИТА У ДЕТЕЙ 2000
  • Кириллов М.А.
  • Богданова А.В.
  • Бойцова Е.В.
RU2159935C1
СПОСОБ ДИАГНОСТИКИ СИНДРОМА БРОНХИАЛЬНОЙ ОБСТРУКЦИИ 2005
  • Корюкина Ирина Петровна
  • Фурман Евгений Григорьевич
  • Абдуллаев Абдулла Рамазанович
  • Никифорова Юлия Константиновна
RU2301621C1
БОЙЧЕНКО Т
Е
Особенности течения острых бронхолегочных заболеваний у детей первых трeх лет жизни из социопатических семей
Автореф
дисс
к.м.н
Благовещенск, 2007, 159с..

RU 2 578 445 C1

Авторы

Буланова Анна Александровна

Букреева Екатерина Борисовна

Кистенев Юрий Владимирович

Никифорова Ольга Юрьевна

Даты

2016-03-27Публикация

2015-03-18Подача