Изобретение относится к области медицины, в частности пульмонологии, и может найти применение в медицинской практике для экспресс-диагностики бронхо-легочных заболеваний.
Известен способ для проведения мониторинга респираторных заболеваний, в том числе бронхиальной астмы «Device and method for monitoring asthma» [l]. Для этого определяют кислотность и концентрацию аммиака в конденсате выдыхаемого воздуха с использованием специального устройства - электронного монитора. Недостатком метода является невысокая специфичность вследствие того, что аммиак в выдыхаемом воздухе появляется и при других бронхо-легочных заболеваниях, например раке легких.
Известен способ мониторинга респираторных заболеваний, в том числе бронхиальной астмы «Device and method for assessing asthma and other diseases» [2]. Для этого определяют соотношение уксусной кислоты и ацетата в конденсате выдыхаемого воздуха. Недостатком метода является сложность реализации, в частности, определение указанных компонент может потребовать использования химических реагентов, дегазации пробы.
Известен способ для селективного обнаружения следов органических испарений, взятый в качестве прототипа [3]. Способ использует набор химических сенсоров и алгоритм распознавания образов. Способ позволяет разделить интересующие газы от фоновых газов, имеющих высокую концентрацию. Для этого создается весовой вектор, соответствующий N-мерному представлению интересующего класса известных компонент, и N-мерное представление неизвестного газа, на основе которого создается вектор исследуемого образа. Рассчитывая внутреннее произведение вектора исследуемого образа и весового вектора, можно определить, находится ли неизвестный газ внутри класса. Весовой вектор создается путем выбора обучающей последовательности, содержащей подмножества известных газов и фоновых газов. Недостатками способа является низкая селективность химических сенсоров, как правило, реагирующих на несколько веществ, и сложность и длительность процедуры анализа данных применительно к задаче диагностики заболеваний.
Новая техническая задача - упрощение способа и сокращение времени исследований.
Для решения поставленной задачи в способе дифференциальной диагностики бронхо-легочных заболеваний по анализу выдыхаемого воздуха, включающем регистрацию спектра поглощения выдыхаемого воздуха пациента и последующую интерпретацию (анализ) данных, предварительно проводят измерения спектра поглощения выдыхаемого воздуха верифицированных групп пациентов с бронхо-легочными заболеваниями, представляющими диагностический интерес, вычисляют средние значения квадрата расстояний Махаланобиса от спектра поглощения выдыхаемого воздуха каждого члена группы до спектров поглощения выдыхаемого воздуха остальных членов группы, затем находят среднее значение от указанных средних значений и доверительный интервал, и при условии, что среднее значение квадрата расстояния Махаланобиса от спектра поглощения исследуемого пациента до таковых для пациентов из группы диагностируемого заболевания попадает в указанный доверительный интервал для пациентов из группы диагностируемого заболевания, делают вывод о наличии у исследуемого пациента диагностируемого заболевания, в противном случае вышеописанную процедуру повторяют для выявления другого бронхо-легочного заболевания.
Способ осуществляют следующим образом
Предварительно, для каждого бронхо-легочного заболевания, представляющего диагностический интерес, проводят набор верифицированной группы пациентов и измерение спектра поглощения выдыхаемого воздуха. Отбор проб выдыхаемого воздуха у пациентов осуществляют в стерильный резервуар из химически инертного материала, не выделяющего газовых примесей, например тедларового или фторопластового пакета, стеклянной пробирки или непосредственно в лазерный газоанализатор. Предпочтительно использовать газоанализатор с источником лазерного излучения, перестраиваемого в области поглощения большинства молекул-биомаркеров бронхо-легочных заболеваний (см. табл.1). Затем регистрируют спектры поглощения указанных проб в области генерации источника лазерного излучения газоанализатора. Для повышения точности измерений возможно проведение многократных измерений с последующим усреднением.
После этого вычисляют средние значения квадрата расстояний Махаланобиса от спектра поглощения выдыхаемого воздуха каждого члена группы до спектров поглощения выдыхаемого воздуха остальных членов группы, затем находят среднее значение от указанных средних значений и доверительный интервал.
Для дифференциальной диагностики бронхо-легочного заболевания исследуемого пациента проводится забор и регистрация спектра поглощения пробы выдыхаемого воздуха данного пациента. Если среднее значение квадрата расстояния Махаланобиса от спектра поглощения исследуемого пациента до таковых для пациентов из группы диагностируемого заболевания попадает в указанный доверительный интервал для пациентов из группы диагностируемого заболевания, делают вывод о наличии у исследуемого пациента диагностируемого заболевания, в противном случае вышеописанную процедуру повторяют для выявления другого бронхо-легочного заболевания.
В основу предлагаемого способа положена специфичность выдыхаемого воздуха при протекании различных патологических процессов в организме, в первую очередь в легких [4]. Основная проблема в данной области связана с возможной неоднозначностью связей между содержанием компонент в выдыхаемом воздухе и определенным заболеванием, невысокой специфичностью части маркеров, внутривидовой вариабельностью параметров (например, [5]).
Для экспресс-диагностики бронхо-легочных заболеваний предлагается контролировать спектр поглощения газовыделений в достаточно протяженной области, в которую попадает целый набор молекул-биомаркеров, а также использовать метод интеллектуального анализа данных, основанный на интегральной оценке состояния.
С формальной точки каждому состоянию биосистемы S соответствует определенный диапазон значений набора измеряемых признаков состояния (у1,у2,…,уn). При этом каждый объект может характеризоваться вектором (у1,у2,…,уn) в n-мерном пространстве признаков.
Удобно производить оценку состояния биосистемы S по отношению к заранее выбранному референтному состоянию S0. В качестве последнего для человека может быть выбрано, например, состояние здорового организма. Пусть состояния биосистемы S0 и S представлены наборами объектов со значениями признаков
где
Мера близости объекта
где d(yj,xi) - квадрат расстояния Махаланобиса между объектами [Конрадов А.А, 1994]. Параметр
Видно, что интегральная оценка (1) с точностью до постоянного множителя равна среднему значению квадрата расстояния Махалонобиса между вектором признаков исследуемого объекта
Предлагаемый способ основан на анализе данных клинических наблюдений.
В соответствии с таблицей 1 большинство молекул-маркеров бронхо-легочных заболеваний, содержащихся в выдыхаемом воздухе, имеют полосы поглощения в области 9-11 мкм, почти полностью перекрываемой излучением СО2-лазера. С учетом этого спектры поглощения проб выдыхаемого воздуха регистрировались с помощью лазерного оптико-акустического газоанализатора ILPA-1 (Россия) [12]. Принцип действия газоанализатора основан на оптико-акустическом эффекте, возникающем при поглощении газами излучения лазера. Используемый в ILPA волноводный CO2-лазер излучает на 61-й линии основного изотопа молекулы углекислого газа (12С16О2). Результатом исследования пробы выдыхаемого воздуха является файл с записью спектра поглощения пробы на длинах волн излучения лазера - скан спектра.
Были исследованы пробы выдыхаемого воздуха 10 пациенток с туберкулезом легких, без сопутствующих заболеваний, находившихся на лечении в ОГУЗ «Томская областная клиническая туберкулезная больница». Забор проб выдыхаемого воздуха производился в лабораторном помещении, оборудованном вытяжной системой вентиляции.
Кроме того, были исследованы пробы выдыхаемого воздуха 10 пациентов с хронической обструктивной болезнью легких (ХОБЛ), находившихся на лечении в 3-й городской больнице г.Томска.
Были также исследованы пробы выдыхаемого воздуха 10 пациентов с бронхиальной астмой, находившихся на лечении в Томской областной клинической больнице.
Контрольный забор проб выдыхаемого воздуха проводился у здоровых людей (117 человек, студенты Сибирского государственного медицинского университета).
Отбор проб выдыхаемого воздуха у пациентов с туберкулезом легких и другими бронхо-легочными заболеваниями проводился в стерильную пробирку. Забор пробы воздуха из пробирок осуществлялся при помощи иглы, соединенной с пробоотборником газоанализатора. Для каждой пробы было зарегистрировано по 10 сканов спектра поглощения на линиях генерации СО2-лазера.
Для сбора проб выдыхаемого воздуха у здоровых студентов применялся калибровочный шприц от серийного спирометра объемом 1 литр. Регистрация скана спектра поглощения проводилась непосредственно сразу после забора пробы. Для каждой пробы было зарегистрировано по 1 скану спектра поглощения.
Было сформировано 3 референтных выборки, каждая из которых соответствовала одному из указанных заболеваний (см. таблицы 2-5).
Для каждого из 30 пациентов, сканы спектров которых вошли в референтные выборки, было рассчитано по 10 значений интегральной оценки (ИО) ИО1 и ИО2 для двух диапазонов частот 931-956 и 966-984 см-1 с использованием каждой из трех референтных выборок. По указанным 10 значениям для каждого пациента были вычислены средние значения и доверительные интервалы величины интегральной оценки для каждого диапазона.
Были вычислены также значения интегральной оценки (ИО) ИО1 и ИО2 для двух диапазонов частот 931-956 и 966-984 см-1 для 117 здоровых людей. Поскольку для здоровых лиц было зарегистрировано по 1 скану спектра поглощения, усреднение для них не проводилось.
Результаты расчетов представлены на Фиг.1-3, причем на каждой из фигур для точек, соответствующих пациентам из референтной группы, указаны доверительные интервалы, а для точек, соответствующих пациентам с другими заболеваниями, доверительные интервалы не указаны. Таким образом, на каждой из Фиг.1-3 представлены точки, координаты которых соответствуют значениям интегральной оценки одних и тех же 30 пациентов и 117 здоровых доноров, рассчитанным относительно одной из референтных групп.
На Фиг.1 представлены результаты анализа спектра поглощения выдыхаемого воздуха для случая, когда в качестве референтной выборки использовались сканы проб 10 пациентов с туберкулезом легких. Видно, что при таком варианте анализа данных группа пациентов с туберкулезом выделена среди остальных групп пациентов.
На Фиг.2 представлены результаты анализа спектра поглощения выдыхаемого воздуха для случая, когда в качестве референтной выборки использовались сканы проб 10 пациентов с бронхиальной астмой. Видно, что в этом случае группа больных с бронхиальной астмой выделена среди остальных групп пациентов.
На Фиг.3 представлены результаты анализа спектра поглощения выдыхаемого воздуха для случая, когда в качестве референтной выборки использовались сканы проб 10 пациентов с ХОБЛ. Видно, что в этом случае группа больных с ХОБЛ выделена среди остальных групп пациентов.
Наглядно виден альтернативный характер метода: по значениям интегральной оценки можно судить о наличии или отсутствии того заболевания, с которым проводится сравнение.
Для демонстрации осуществимости предлагаемой методики были проведены расчеты интегральных оценок для пациентов, сканы спектров которых не вошли в перечисленные референтные группы, а образовали группу сравнения.
Предварительно, для каждой референтной группы были найдены средние значения интегральных оценок, а также доверительные интервалы. Полученные значения представлены в верхней строке таблиц 3-9.
Примеры применения
Пример 1. Больной А.
Возраст: 59 лет
Пол: муж.
Диагноз: туберкулез легких (диссеминированная форма). Устойчивость к изониазиду, стрептомицину.
Сопутствующие заболевания: дыхательная недостаточность, гепатит (ремиссия).
При проведении экспресс-диагностики предлагаемым способом были зарегистрированы 10 сканов спектра поглощения выдыхаемого воздуха, вычислены значения интегральных оценок для каждого из двух диапазонов частот с каждой из трех референтных выборок. Результаты расчетов представлены в таблице 6. Установлено, что при использовании референтной выборки "туберкулез" полученные значения интегральной оценки для данного пациента попали в область, соответствующую референтной выборке (Фиг.4), а при использовании двух других референтных - оказались за пределами референтной выборки (Фиг.5, Фиг.6).
Таким образом, предлагаемым способом подтвержден диагноз туберкулез легких.
Пример 2. Больной Б.
Возраст: 27 лет
Пол: муж.
Диагноз: туберкулез легких (диссеминированная форма). Устойчивость к изониазиду, рифампицину, стрептомицину.
Сопутствующие заболевания: синдром алкогольной зависимости, дыхательная недостаточность.
При проведении экспресс-диагностики предлагаемым способом были зарегистрированы 10 сканов спектра, вычислены значения интегральных оценок для каждого из двух диапазонов частот с каждой из трех референтных выборок (таблица 7) и установлено, что при использовании референтной выборки "туберкулез" полученные значения интегральной оценки для данного пациента попали в область, соответствующую референтной выборке (Фиг.4), а при использовании двух других референтных - оказались за пределами референтной выборки (Фиг.5, Фиг.6).
Таким образом, предлагаемым способом подтвержден диагноз туберкулез легких.
Пример 3. Больной В.
Возраст: 60 лет
Пол: жен.
Диагноз: бронхиальная астма.
Сопутствующие заболевания: гипертоническая болезнь.
При проведении экспресс-диагностики предлагаемым способом были зарегистрированы 10 сканов спектра, вычислены значения интегральных оценок для каждого из двух диапазонов с каждой из трех референтных выборок (таблица 8) и установлено, что при использовании референтной выборки "бронхиальная астма" полученные значения интегральной оценки для данного пациента попали в доверительные интервалы точек из референтной выборки (Фиг.5), при использовании референтной выборки "ХОБЛ" - оказались в области референтной выборки (Фиг.6), а при использовании референтной выборки "туберкулез" - оказались за пределами референтной выборки (Фиг.4).
Таким образом, предлагаемым способом подтвержден диагноз "бронхиальная астма" и установлен диагноз "ХОБЛ".
Пример 4. Больной Г.
Возраст: 55 лет
Пол: жен.
Диагноз: бронхиальная астма.
Сопутствующие заболевания: гастроэзофагеальная рефлюксная болезнь.
При проведении экспресс-диагностики предлагаемым способом были зарегистрированы 10 сканов спектра, вычислены значения интегральных оценок для каждого из двух диапазонов с каждой из трех референтных выборок (таблица 9) и установлено, что при использовании референтной выборки "бронхиальная астма" полученные значения интегральной оценки для данного пациента попали в область, соответствующую референтной выборке (Фиг.5), а при использовании двух других референтных - оказались за пределами референтной выборки (Фиг.4, Фиг.6).
Таким образом, предлагаемым способом подтвержден диагноз бронхиальная астма.
Пример 5. Больной Д.,
Возраст: 77 лет
Пол: муж.
Диагноз заболевания: ХОБЛ I стадии, обострение.
Сопутствующие: ишемическая болезнь сердца: стенокардия напряжения ФК II, предсердная экстрасистолия, гипертоническая болезнь III стадии, риск 4.
При проведении экспресс-диагностики предлагаемым способом были зарегистрированы 11 сканов спектра, вычислены значения интегральных оценок для каждого из двух диапазонов с каждой из трех референтных выборок (таблица 10) и установлено, что при использовании референтной выборки "ХОБЛ" полученные значения интегральной оценки для данного пациента попали в область, соответствующую референтной выборке (Фиг.6), а при использовании двух других референтных - оказались за пределами референтной выборки (Фиг.4, Фиг.5).
Таким образом, предлагаемым способом подтвержден диагноз ХОБЛ.
Пример 6. Больной Е.
Возраст: 72 лет
Пол: муж.
Диагноз: внебольничная нижнедолевая пневмония левосторонняя средней степени тяжести. ХОБЛ, обострение.
Сопутствующие заболевания: гипертоническая болезнь II стадии, риск 3.
При проведении экспресс-диагностики предлагаемым способом были зарегистрированы 10 сканов спектра, вычислены значения интегральных оценок для каждого из двух диапазонов с каждой из трех референтных выборок (таблица 11) и установлено, что при использовании референтной выборки "ХОБЛ" полученные значения интегральной оценки для данного пациента попали в область, соответствующую референтной выборке (Фиг.6), а при использовании двух других референтных - оказались за пределами референтной выборки (Фиг.4, Фиг.5).
Таким образом, предлагаемым способом подтвержден диагноз ХОБЛ.
Пример 7. Больной Ж.
Возраст: 68 лет
Пол: муж.
Диагноз: ХОБЛ III стадии, обострение. Эндогенная бронхиальная астма средней степени тяжести, обострение.
Сопутствующие заболевания: гипертоническая болезнь II стадии, риск 3, хронический гастрит, неполная ремиссия.
При проведении экспресс-диагностики предлагаемым способом были зарегистрированы 10 сканов спектра, вычислены значения интегральных оценок для каждого из двух диапазонов с каждой из трех референтных выборок (таблица 12) и установлено, что при использовании референтной выборки "ХОБЛ" полученные значения интегральной оценки для данного пациента попали в область, соответствующую референтной выборке (Фиг.6), а при использовании двух других референтных выборок - оказались за ее пределами (Фиг.4, Фиг.5).
Таким образом, предлагаемым способом подтвержден диагноз ХОБЛ.
Приложение
Фиг.1. Значения интегральных оценок для пациентов, пробы выдыхаемого воздуха которых вошли в референтные выборки, и здоровых лиц. Референтная - туберкулез легких.
Фиг.2. Значения интегральных оценок для пациентов, пробы выдыхаемого воздуха которых вошли в референтные выборки, и здоровых лиц. Референтная - бронхиальная астма.
Фиг.3. Значения интегральных оценок для пациентов, пробы выдыхаемого воздуха которых вошли в референтные выборки, и здоровых лиц. Референтная - ХОБЛ.
Фиг 4. Значения интегральных оценок для пациентов с различными бронхо-легочными заболеваними из группы сравнения. Референтная выборка - туберкулез.
Фиг.5. Значения интегральных оценок для пациентов с различными бронхо-легочными заболеваними из группы сравнения. Референтная выборка - астма.
Фиг 6. Значения интегральных оценок для пациентов с различными бронхо-легочными заболеваними из группы сравнения. Референтная выборка (диагноз) - ХОБЛ.
Таблица 1. Перечень и характеристики типичных молекул-маркеров бронхо-легочных заболеваний, содержащихся в выдыхаемом воздухе [5, 7-11].
Таблица 2. Значения регистрируемого сигнала газоанализатора в диапазонах частот 931-956 см-1 и 966-984 см-1 для 10 пациентов из референтной группы «туберкулез легких».
Таблица 3. Значения регистрируемого сигнала газоанализатора в диапазонах частот 931-956 см-1 и 966-984 см-1 для 10 пациентов из референтной группы «бронхиальная астма».
Таблица 4. Значения регистрируемого сигнала газоанализатора в диапазонах частот 931-956 см-1 и 966-984 см-1 для 10 пациентов из референтной группы «ХОБЛ».
Таблица 5. Значения регистрируемого сигнала газоанализатора в диапазонах частот 931-956 см-1 и 966-984 см-1 для 7 пациентов из группы сравнения.
Таблица 6. Интегральная оценка спектра поглощения Больного А (пример 1).
Таблица 7. Интегральная оценка спектра поглощения Больного Б (пример 2).
Таблица 8. Интегральная оценка спектра поглощения Больного В (пример 3).
Таблица 9. Интегральная оценка спектра поглощения Больного Г (пример 4).
Таблица 10 Интегральная оценка спектра поглощения Больного Д (пример 5).
Таблица 11. Интегральная оценка спектра поглощения Больного Е (пример 6).
Таблица 12. Интегральная оценка спектра поглощения Больного Ж (пример 7).
Источники информации, принятые во внимание при составлении описания
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ БРОНХОЛЕГОЧНЫХ ЗАБОЛЕВАНИЙ | 2015 |
|
RU2578445C1 |
Способ диагностики хронического аспергиллёза лёгких | 2023 |
|
RU2814389C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ НЕКОНТРОЛИРУЕМОГО ТЕЧЕНИЯ ТЯЖЕЛОЙ БРОНХИАЛЬНОЙ АСТМЫ | 2011 |
|
RU2470582C1 |
СПОСОБ КОРРЕКЦИИ ДЕФИЦИТА АЛЬВЕОЛЯРНЫХ МАКРОФАГОВ У БОЛЬНЫХ БРОНХОЛЕГОЧНЫМИ ЗАБОЛЕВАНИЯМИ | 2011 |
|
RU2455038C1 |
СПОСОБ ЭКСПРЕСС-ДИАГНОСТИКИ ДИСБАКТЕРИОЗА ПОЛОСТИ РТА | 2009 |
|
RU2433400C2 |
Способ диагностики профессиональной хронической обструктивной болезни легких, сформировавшейся в условиях действия токсических промаэрозолей | 2016 |
|
RU2613164C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ИНДИВИДУАЛЬНОГО РИСКА РАЗВИТИЯ БРОНХИАЛЬНОЙ АСТМЫ В РЕГИОНАХ С ВЫСОКОЙ И НИЗКОЙ РАСПРОСТРАНЕННОСТЬЮ ГЕЛЬМИНТНЫХ ИНФЕКЦИЙ | 2012 |
|
RU2503959C1 |
СПОСОБ НЕИНВАЗИВНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ ОРГАНОВ ДЫХАТЕЛЬНОЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2021 |
|
RU2760396C1 |
Способ медицинской реабилитации пациентов трудоспособного возраста в раннем восстановительном периоде ишемического инсульта с сопутствующим обструктивным хроническим нарушением функции дыхательной системы вне обострения | 2019 |
|
RU2714214C1 |
СПОСОБ ЛЕЧЕНИЯ БРОНХОЛЕГОЧНЫХ ЗАБОЛЕВАНИЙ | 2011 |
|
RU2467776C1 |
Изобретение относится к области медицины, в частности к пульмонологии, для экспресс-диагностики бронхо-легочных заболеваний. Способ экспресс-диагностики бронхо-легочных заболеваний состоит в том, что проводят регистрацию и анализ спектра поглощения выдыхаемого воздуха пациента, причем предварительно проводят измерения спектра поглощения выдыхаемого воздуха верифицированных групп пациентов с бронхо-легочными заболеваниями, представляющими диагностический интерес. Вычисляют средние значения квадрата расстояний Махаланобиса от спектра поглощения выдыхаемого воздуха каждого члена группы до спектров поглощения выдыхаемого воздуха остальных членов группы, затем находят среднее значение от указанных средних значений и доверительный интервал, и, если среднее значение квадрата расстояния Махаланобиса от спектра поглощения исследуемого пациента до таковых для пациентов из группы диагностируемого заболевания попадает в указанный доверительный интервал для пациентов из группы диагностируемого заболевания, делают вывод о наличии у исследуемого пациента диагностируемого заболевания, в противном случае вышеописанную процедуру повторяют для выявления другого бронхо-легочного заболевания. Использование заявленного способа позволяет упростить и сократить время диагностики бронхо-легочных заболеваний. 6 ил., 12 табл., 7 пр.
Способ экспресс-диагностики бронхо-легочных заболеваний, включающий регистрацию выдыхаемого воздуха пациента и его анализ, отличающийся тем, что проводят регистрацию и анализ спектра поглощения выдыхаемого воздуха пациента, причем предварительно проводят измерения спектра поглощения выдыхаемого воздуха верифицированных групп пациентов с бронхо-легочными заболеваниями, представляющими диагностический интерес, вычисляют средние значения квадрата расстояний Махаланобиса от спектра поглощения выдыхаемого воздуха каждого члена группы до спектров поглощения выдыхаемого воздуха остальных членов группы, затем находят среднее значение от указанных средних значений и доверительный интервал, и, если среднее значение квадрата расстояния Махаланобиса от спектра поглощения исследуемого пациента до таковых для пациентов из группы диагностируемого заболевания попадает в указанный доверительный интервал для пациентов из группы диагностируемого заболевания, делают вывод о наличии у исследуемого пациента диагностируемого заболевания, в противном случае вышеописанную процедуру повторяют для выявления другого бронхо-легочного заболевания.
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ БРОНХОЛЕГОЧНОЙ СИСТЕМЫ | 1995 |
|
RU2117290C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ТЕЧЕНИЯ БРОНХОЛЕГОЧНЫХ ЗАБОЛЕВАНИЙ И РАКА ЛЕГКОГО | 2005 |
|
RU2280868C1 |
СПОСОБ ДИАГНОСТИКИ ИНФИЛЬТРАТИВНОГО ТУБЕРКУЛЕЗА ЛЕГКИХ | 2008 |
|
RU2379057C2 |
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ТУБЕРКУЛЕЗА И САРКОИДОЗА ОРГАНОВ ДЫХАНИЯ | 2004 |
|
RU2256916C1 |
ПРИСПОСОБЛЕНИЕ ДЛЯ СМЕНЫ ПОВРЕЖДЕННЫХ КОЛОСНИКОВ В ГОРЯЧЕЙ ТОПКЕ | 1925 |
|
SU5063A1 |
МЕДВЕДЕВ М.А | |||
Спектральный анализ состава выдыхаемого воздуха в условиях формирования гиперреактивности воздухоносных путей // Пульмонология | |||
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек | 1923 |
|
SU2007A1 |
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
Способ приготовления сернистого красителя защитного цвета | 1915 |
|
SU63A1 |
US 5469369 А, 21.11.1995. |
Авторы
Даты
2013-06-27—Публикация
2011-08-09—Подача