Изобретение относится к порошковой металлургии, в частности к получению открытопористого наноструктурного никеля, и может быть использовано при изготовлении воздушных и жидкостных фильтров, основы нейтрализаторов, электродов, составных элементов катализаторов и носителей катализаторов.
Готовят смесь на основе порошкообразного кристаллогидрата нитрата никеля и жидкого многоатомного спирта в качестве газообразующего восстановителя при следующем мольном соотношении компонентов смеси: жидкое органическое соединение/кристаллогидрат нитрата никеля 1:(2.5-4). Подготовленную смесь помещают в предварительно разогретый до 80°С тигель, заполняя его не более чем на 1/5 от высоты, осуществляют локальное инициирование реакции самораспространяющегося высокотемпературного синтеза при постоянном отводе образующихся в результате горения газообразных продуктов.
Известен способ получения пористого никеля методом самораспространяющегося высокотемпературного синтеза (СВС) (патент РФ №2320456, МПК B22F 3/23, публ. 27.03.2008 г.), включающий предварительную подготовку компонентов шихты, содержащей порошки фенолоформальдегидной смолы и высушенного реагента (нитрата никеля), многосложную и длительную осушку органического реагента, соли никеля, перемешивание смеси.
К недостаткам известного способа относится отсутствие возможности получения достаточно однородной наноструктуры без включений непрореагировавших реагентов, т.к. избыток смолы или соли никеля приводит к появлению в металле углерода или оксида никеля соответственно, увеличение трудоемкости процесса, так как существует необходимость подготовки исходных реагентов до смешения, низкие значения удельной поверхности 5-20 м2/г.
Известен в качестве наиболее близкого по технической сущности к заявляемому способ получения открытопористого наноструктурного металла (патент РФ №2480310, МПК B22F 3/23, публ. 27.04.2013 г.), включающий предварительную подготовку компонентов смеси на основе порошкообразного нитрата металла и реагента в виде газообразующего восстановителя, их смешение, последующее проведение реакции самораспространяющегося высокотемпературного синтеза (СВС) при постоянном отводе образующихся в результате горения газообразных продуктов, согласно изобретению в качестве реагента в виде газообразующего восстановителя в составе смеси используют жидкое органическое соединение из группы гидроксисодержащих соединений, например многоатомный спирт, а в составе нитрата металла, инертного к продуктам горения, выбирают металл из побочной подгруппы металлов 1 группы периодической системы элементов, или металл из группы железа, при следующем мольном соотношении компонентов смеси:
- жидкое органическое соединение/нитрат металла соответственно 1:(2÷3), перед смешением компонентов исходной смеси осуществляют сушку порошкообразного кислородсодержащего соединения металла (нитрата металла) при 130-150°C, подготовленную смесь тщательно перемешивают, помещают в ячейку и осуществляют локальное инициирование процесса горения смеси. Кроме того, в предлагаемом способе в качестве жидкого органического восстановителя из группы гидроксисодержащих соединений используют глицерин.
К недостаткам известного способа относится:
- увеличение трудоемкости процесса, из-за необходимости подготовки исходных компонентов;
- обеспечение удельной поверхности готового материала ниже 20 м2/г.
Задачей авторов предлагаемого изобретения является упрощение способа, а также улучшения качества пористого наноструктурного никеля, при сохранении однородной нанноструктуры без включений непрореагировавших реагентов, за счет увеличения показателей удельной поверхности от 20 до 40 м2/г.
Указанные задача и новый технический результат обеспечиваются тем, что в способе получения открытопористого наноструктурного никеля, включающем смешение компонентов смеси на основе порошкообразного кристаллогидрата нитрата никеля и реагента в виде газообразующего восстановителя, в качестве которого используют жидкое органическое соединение из группы гидроксидсодержащих соединений, например многоатомный спирт, смесь тщательно перемешивают, помещают в предварительно разогретый тигель и осуществляют локальное инициирование реакции самораспространяющегося высокотемпературного синтеза (СВС) при постоянном отводе образующихся в результате горения газообразных продуктов, мольное соотношение компонентов смеси: жидкое органическое соединение/кристаллогидрат нитрата никеля 1:(2.5-4).
В основе способа лежит экзотермическая реакция окисления углеродсодержащих компонентов шихты нитрогруппой, при одновременном восстановлении химически связанного никеля до металлического никеля. Для прохождения реакции во всем объеме материала не обязателен разогрев всей смеси, достаточно только локальное инициирование процесса СВС, например, с помощью кратковременного теплового импульса. Газы, выделившиеся в процессе взаимодействия компонентов шихты, прогревают следующие слои материала и вовлекают все новые массы смеси исходных компонентов в процесс горения. Таким образом, осуществляется возможность протекания реакции в узкой зоне, перемещающейся по смеси за счет теплопередачи после локального инициирования процесса СВС.
В результате этого процесса выделяется большое количество газов и паров воды, обуславливающие формирование в условиях проведения СВС высокой степени пространственного разрешения структуры получаемого материала.
Отсутствие предварительной подготовки компонентов обусловлено процессом неполного растворения кристаллогидрата нитрат никеля в многоатомном спирте, который находится в слабой зависимости от размера частиц.
Предварительный разогрев тигля необходим для обеспечения полноты протекания реакции в прилегающих к стенке тигля слоях смеси, в которых при отсутствии разогрева снижается температура во фронте горения, а следовательно, и степень восстановления химически связанного никеля, за счет эффективного теплосъема на разогрев стенок тигля.
Возможность промышленной реализации предлагаемого способа подтверждается следующими примерами конкретного исполнения.
Пример 1.
В лабораторных условиях предлагаемый способ получения открытопористого наноструктурного никеля был опробован с использованием следующих условий и реагентов.
Использовали нитрат никеля в виде его 6-водного кристаллогидрата, в качестве органического реагента (газообразующего восстановителя) использовали многоатомный спирт - глицерин. Компоненты исходной смеси в соотношении 1/(2,5-4) тщательно перемешивали в емкости с последующим помещением в разогретый до 80°C тигель из кварцевого стекла таким образом, чтобы тигель был заполнен не более чем на 1/5 высоты. Через открытый торец тигля реакционную смесь поджигают тепловым импульсом электрической спирали, нагретой до 370-800°C. В точке контакта смеси с искрой возникает фронт реакции горения (СВС), распространяющийся по смеси со скоростью 1 мм/с с выделением большого количества тепла и газообразных продуктов горения.
На чертеже 1 представлена микроструктура открытопористого наноструктурного никеля, полученного СВС методом по примеру 1 (Увеличение в 300000 раз).
Полученный твердофазный продукт имеет структуру, состоящую из взаимосвязанных рыхлоупакованных пористых пленок. Каждая пленка обладает нанокристаллической структурой со средним размером отдельных кристаллитов от 35 до 60 нм. В кристаллитах представлены как наноструктурированные, так и нанофрагментированные области. Размер микроблоков составляет 5-20 нм. Анализ полученного материала показал, что он содержит 99,7% никеля (углерода 0,08%, оксида никеля - 2,92%), обладает пористостью 98%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ОТКРЫТОПОРИСТОГО НАНОСТРУКТУРНОГО МЕТАЛЛА | 2011 |
|
RU2480310C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПОРИСТЫХ КЕРАМИЧЕСКИХ БЛОКОВ | 2013 |
|
RU2533510C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО НАНОСТРУКТУРНОГО НИКЕЛЯ | 2005 |
|
RU2320456C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО МАТЕРИАЛА НА ОСНОВЕ НИТРИДА КРЕМНИЯ | 2019 |
|
RU2736195C1 |
Способ легирования отливок | 2015 |
|
RU2630990C2 |
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА | 2010 |
|
RU2469816C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ НАНЕСЕННЫХ КАТАЛИЗАТОРОВ | 2005 |
|
RU2284219C1 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФИДА МЕТАЛЛА | 2013 |
|
RU2525174C1 |
Способ получения компактных материалов, содержащих диборид титана, методом самораспространяющегося высокотемпературного синтеза | 2016 |
|
RU2658566C2 |
Способ получения сложного оксида ниобия и стронция | 2023 |
|
RU2803302C1 |
Изобретение относится к получению открытопористого наноструктурного никеля. Смешивают порошкообразный кристаллогидрат нитрат никеля и жидкий многоатомный спирт в качестве газообразующего восстановителя при следующем соотношении: жидкий многоатомный спирт/порошкообразный кристаллогидрат нитрата никеля 1:(2,5-4). Заполняют полученной смесью разогретый до 80°С тигель не более чем на 1/5 его высоты и осуществляют локальное инициирование реакции самораспространяющегося высокотемпературного синтеза в смеси с обеспечением постоянного отвода образующихся в результате горения газообразных продуктов. Обеспечивается повышение качества пористого наноструктурного никеля с удельной поверхностью от 20 до 40 м2/г, а также однородность наноструктуры без включений не прореагировавших реагентов. 1 ил., 1 пр.
Способ получения открытопористого наноструктурного никеля, включающий смешение порошкообразного кристаллогидрата нитрата никеля и жидкого многоатомного спирта в качестве газообразующего восстановителя, отличающийся тем, что полученной смесью заполняют разогретый до 80°С тигель не более чем на 1/5 его высоты и осуществляют локальное инициирование реакции самораспространяющегося высокотемпературного синтеза в смеси с обеспечением постоянного отвода образующихся в результате горения газообразных продуктов, при этом используют смесь, содержащую компоненты при следующем соотношении: жидкий многоатомный спирт/порошкообразный кристаллогидрат нитрата никеля 1:(2,5-4).
СПОСОБ ПОЛУЧЕНИЯ ОТКРЫТОПОРИСТОГО НАНОСТРУКТУРНОГО МЕТАЛЛА | 2011 |
|
RU2480310C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОГО НАНОСТРУКТУРНОГО НИКЕЛЯ | 2005 |
|
RU2320456C2 |
Катализатор для гидролиза окисленного парафина | 1985 |
|
SU1314498A1 |
US 7374717 B2, 20.05.2008 | |||
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ БИОСОВМЕСТИМЫХ МАТЕРИАЛОВ НА ОСНОВЕ НИКЕЛИДА ТИТАНА | 2010 |
|
RU2459686C2 |
Медицинские материалы и имплантаты с памятью формы, под ред | |||
ГЮНТЕРА В.Э., том.1, Томск, 2011, с.329, 330, 334. |
Авторы
Даты
2016-03-27—Публикация
2014-06-30—Подача