СПОСОБ РЕГУЛИРОВАНИЯ РАБОТЫ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ Российский патент 2016 года по МПК F02C9/00 

Описание патента на изобретение RU2578931C1

Изобретение относится к способам регулирования режимами работы двигателя при его эксплуатации на летательном аппарате по приборной скорости полета в зависимости от предельной осевой нагрузки, действующей на упорный подшипник ротора авиационного газотурбинного двигателя.

Известен способ определения осевой нагрузки, включающий измерения осевой нагрузки Rос на подшипник ротора, давления на входе в ротор , давления на выходе из ротора , физических оборотов ротора nфиз, температуры на входе в ротор на нескольких режимах работы газотурбинного двигателя при стендовых испытаниях, построение универсальной зависимости и зависимости и определение осевой нагрузки на различных режимах работы авиационного газотурбинного двигателя (патент РФ №2426902, МПК F02C 7/06, опубл. 10.02.2011).

Однако очень часто в реальных режимах эксплуатации летательного аппарата, особенно в процессе доводки двигателя и самолета, существует ограничение по уровню осевой нагрузки, определяемое из условия обеспечения требуемых запасов прочности узлов двигателя, и летчику необходимо знать, при какой приборной скорости полета наступает это ограничение, чтобы регулировать работу авиационного газотурбинного двигателя по приборной скорости самому, либо ввести регулирование в систему автоматического управления летательного аппарата.

Задача изобретения - повышение эффективности доводки двигателя в составе летательного аппарата при летных испытаниях.

Ожидаемый технический результат - увеличение ресурса двигателя и его надежности, в частности через ограничение величины осевой нагрузки, действующей на подшипник ротора авиационного газотурбинного двигателя и определение функциональной связи предельной осевой нагрузки и приборной скорости летательного аппарата.

Ожидаемый технический результат достигается тем, что в способе регулирования работы авиационного газотурбинного двигателя, включающем измерения осевой нагрузки Rос на подшипник ротора, давления на входе в ротор , давления на выходе из ротора , физических оборотов ротора nфиз, температуры на входе в ротор на нескольких режимах работы газотурбинного двигателя при стендовых испытаниях, построение универсальной зависимости и зависимости , согласно изобретению назначают предельную осевую нагрузку Rос. пред для каждого режима работы двигателя, которому соответствует свое значение числа Маха и высоты полета, по nпривед и по зависимости определяют , далее по универсальной зависимости определяют осевую нагрузку Rос и сравнивают ее с Rос. пред, последовательными приближениями определяют предельное число Маха Мпред, при котором Rос=Rос. пред, определяют соответствующую ему предельную приборную скорость по зависимости , во время полета регулируют режимы работы авиационного газотурбинного двигателя так, чтобы приборная скорость полета Vприб<Vприб. пред.

Назначение предельной осевой нагрузки Rос. пред позволяет ввести ограничение по осевой нагрузке, действующей на подшипник ротора, исходя из прочностных расчетов узлов двигателя.

Использование универсальной зависимости и зависимости , построенных на основании стендовых испытаний двигателя, позволяет, не прибегая к дополнительным замерам осевой нагрузки и дополнительного препарирования ротора авиационного газотурбинного двигателя для стендовых испытаний, определить осевую нагрузку для различных режимов работы авиационного газотурбинного двигателя.

Сравнение осевой нагрузки Rос, полученной с использованием универсальной зависимости с назначенной предельной осевой нагрузкой Roc. пред позволяет определить при каком режиме работы двигателя, которому соответствует свое число Маха М, высота Н и nпривед, наступает ограничение по осевой нагрузке, действующей на подшипник ротора, т.е. Rос=Rос. пред. В случае неравенства Rос и Rос. пред необходимо последовательными приближениями, а именно изменениями числа Маха М, высоты Н и nпривед и, следовательно, режима работы двигателя, определить такой режим с соответствующими ему предельным числом Маха Мпред, высотой Н и nпривед, при котором Roc=Roc. пред.

Связь между предельной скоростью полета Vприб. пред. и предельным числом Маха Мпред на основании зависимости позволяет летчику по приборной скорости Vприб летательного аппарата определить, наступает ли ограничение по осевой нагрузке, действующей на подшипник ротора авиационного газотурбинного двигателя, поскольку данные по осевой нагрузке не выводятся на приборную панель летательного аппарата, а двигатель в полете не препарируют под прямой замер осевой нагрузки. При показаниях на приборной панели летательного аппарата уровня приборной скорости Vприб=Vприб. пред, летчик может изменить режим работы двигателя с помощью рычага управления двигателя αРУД, либо ограничение Vприб<Vприб. пред может быть внесено в систему автоматического управления двигателем, тем самым обеспечивая надежность и ресурс работы авиационного газотурбинного двигателя в составе летательного аппарата.

На фиг. 1 показана универсальная зависимость.

На фиг. 2 показана зависимость.

Способ реализуют следующим способом.

Препарируют опору ротора экспериментального авиационного газотурбинного двигателя под прямой замер осевой нагрузки. На наземном стенде при высоте полета Н=0 и числе Маха М=0 при снятии дроссельной характеристики от режима «малого газа» до «максимала» измеряют осевую нагрузку Roc на подшипник ротора, давление на входе в ротор , давление на выходе из ротора , физические обороты ротора nфиз, температуру на входе в ротор , на нескольких режимах работы газотурбинного двигателя, строят универсальную зависимость и зависимость , назначают предельную осевую нагрузку Roc. пред, выбранную на основании прочностных расчетов, для каждого режима работы двигателя, которому соответствует свое значение числа Маха и высоты полета, по nпривед и по зависимости определяют , далее по универсальной зависимости определяют осевую нагрузку Rос и сравнивают ее с Rос. пред, последовательными приближениями определяют предельное число Маха Мпред, при котором Rос=Roc. пред, определяют соответствующую ему предельную приборную скорость по зависимости , во время полета регулируют режимы работы авиационного газотурбинного двигателя так, чтобы приборная скорость полета Vприб<Vприб. пред.

Пример:

1. По данным стендовых испытаний в ходе измерений определили осевую нагрузку Rос на подшипник ротора, давление на входе в ротор , давление на выходе из ротора , физические обороты ротора nфиз, температуру на входе в ротор на нескольких режимах работы газотурбинного двигателя.

2. Построили зависимости (фиг. 1 и 2).

3. Назначили предельную осевую нагрузку Rоc. пред=5000 кгс (по данным прочностных расчетов).

4. Выбрали один из режимов работы двигателя, например:

5. Используя зависимость (фиг. 2), определили .

6. Используя зависимость (фиг. 1) определили и далее Rос=2500·2=5000 кгс.

7. Сравнили полученную нагрузку с предельной осевой нагрузкой

Roc=Rос. пред=5000 кгс (в нашем случае они равны).

В случае неравенства осевой нагрузки с предельной осевой нагрузкой, выбираем другой режим работы двигателя.

8. Поскольку Rос=Rос. пред=5000 кгс, то предельное число Маха Мпред=М=1,45.

9. По зависимости. .определили предельную приборную скорость полета ,

где

а=325 м/с - скорость звука на данном режиме (Н=4 км; М=1,45);

ρ=0,8194 кг/м3 - плотность воздуха на данном режиме (Н=4 км; М=1,45);

ρо=1,225 кг/м3 - плотность воздуха на высоте Н=0.

10. Во время полета самолета приборная скорость не должна превышать 1386 км/ч. Приборную скорость полета регулирует сам летчик, изменяя режим работы двигателя с помощью рычага управления двигателем αРУД, либо уровень скорости летательного аппарата поддерживает система автоматического управления.

Реализация изобретения позволяет уменьшить время доводки двигателя на стадии летных испытаний двигателя в составе летательного аппарата и повысить экономичность стадии доводки, поскольку не требует использования дорогостоящего оборудования, необходимого для прямого измерения осевой нагрузки, дополнительного препарирования ротора двигателя, который после данных испытаний уже невозможно использовать в составе двигателя, участвующего в летных испытаниях, при этом увеличить ресурс двигателя и его надежность через ограничение величины осевой нагрузки, действующей на ротор авиационного газотурбинного двигателя и определение функциональной связи между предельной осевой нагрузкой и приборной скоростью полета летательного аппарата.

Похожие патенты RU2578931C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ОСЕВОЙ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА УПОРНЫЙ ПОДШИПНИК РОТОРА АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2009
  • Канахин Юрий Александрович
  • Марчуков Евгений Ювенальевич
RU2426902C2
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ 2003
  • Кирюхин В.В.
  • Колотников М.Е.
  • Марчуков Е.Ю.
  • Мельник В.И.
  • Чепкин В.М.
RU2236671C1
Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию 2023
  • Гогаев Георгий Павлович
  • Богданов Михаил Анатольевич
  • Шубин Игорь Аркадьевич
  • Немцев Дмитрий Владимирович
RU2818426C1
Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию 2022
  • Гогаев Георгий Павлович
  • Богданов Михаил Анатольевич
  • Шубин Игорь Аркадьевич
  • Немцев Дмитрий Владимирович
RU2796563C1
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ 2020
  • Гогаев Георгий Павлович
  • Богданов Михаил Анатольевич
  • Шубин Игорь Аркадьевич
  • Немцев Дмитрий Владимирович
RU2742321C1
Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию 2020
  • Капилюшов Сергей Владимирович
  • Лебёдкина Наталья Николаевна
RU2753789C1
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ 2018
  • Богданов Михаил Анатольевич
  • Гогаев Георгий Павлович
  • Шубин Игорь Аркадьевич
  • Немцев Дмитрий Владимирович
RU2696523C1
СПОСОБ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ 2007
  • Новиков Александр Сергеевич
  • Пайкин Александр Григорьевич
  • Сиротин Николай Николаевич
  • Пунин Александр Сергеевич
  • Талинг Борис Николаевич
  • Серёгин Юрий Николаевич
  • Помыкалова Раиса Ивановна
RU2374614C2
Система для испытаний авиационного газотурбинного двигателя 2020
  • Медяков Олег Евгеньевич
  • Новиков Артем Владимирович
  • Ямщикова Ольга Вячеславовна
RU2770316C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СПОСОБ ИСПЫТАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ), СПОСОБ ПРОИЗВОДСТВА ПАРТИИ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ (ВАРИАНТЫ), СПОСОБ ЭКСПЛУАТАЦИИ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2011
  • Марчуков Евгений Ювенальевич
  • Куприк Виктор Викторович
  • Киселев Андрей Леонидович
  • Селиванов Николай Павлович
RU2482459C1

Иллюстрации к изобретению RU 2 578 931 C1

Реферат патента 2016 года СПОСОБ РЕГУЛИРОВАНИЯ РАБОТЫ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Изобретение относится к способам регулирования режимами работы двигателя при его эксплуатации на летательном аппарате по приборной скорости полета в зависимости от предельной осевой нагрузки, действующей на упорный подшипник ротора авиационного газотурбинного двигателя. Назначают предельную осевую нагрузку Rос. пред для каждого режима работы двигателя, которому соответствует свое значение числа Маха и высоты полета, по nпривед и по зависимости определяют , далее по универсальной зависимости определяют осевую нагрузку Rос и сравнивают ее с Roc. пред, последовательными приближениями определяют предельное число Маха Мпред, при котором Rос=Rос. пред, определяют соответствующую ему предельную приборную скорость по зависимости. , во время полета регулируют режимы работы авиационного газотурбинного двигателя так, чтобы приборная скорость полета Vприб<Vприб. пред. Реализация изобретения позволяет уменьшить время доводки двигателя на стадии летных испытаний двигателя в составе летательного аппарата и повысить экономичность стадии доводки, при этом увеличить ресурс двигателя и его надежность через ограничение величины осевой нагрузки, действующей на ротор авиационного газотурбинного двигателя. 2 ил.

Формула изобретения RU 2 578 931 C1

Способ регулирования работы авиационного газотурбинного двигателя, включающий измерения осевой нагрузки Roc на подшипник ротора, давления на входе в ротор , давления на выходе из ротора , физических оборотов ротора nфиз, температуры на входе в ротор на нескольких режимах работы газотурбинного двигателя при стендовых испытаниях, построение универсальной зависимости и зависимости , отличающийся тем, что назначают предельную осевую нагрузку Rос. пред для каждого режима работы двигателя, которому соответствует свое значение числа Маха и высоты полета, по nпривед и по зависимости определяют , далее по универсальной зависимости определяют осевую нагрузку Rос и сравнивают ее с Rос. пред, последовательными приближениями определяют предельное число Маха Mпред, при котором Rос=Rос. пред, определяют соответствующую ему предельную приборную скорость по зависимости , во время полета регулируют режимы работы авиационного газотурбинного двигателя так, чтобы приборная скорость полета Vприб<Vприб. пред,где а - скорость звука, ρ - плотность воздуха на высоте полета, ρо - плотность воздуха на высоте Н=0.

Документы, цитированные в отчете о поиске Патент 2016 года RU2578931C1

СПОСОБ ОПРЕДЕЛЕНИЯ ОСЕВОЙ НАГРУЗКИ, ДЕЙСТВУЮЩЕЙ НА УПОРНЫЙ ПОДШИПНИК РОТОРА АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2009
  • Канахин Юрий Александрович
  • Марчуков Евгений Ювенальевич
RU2426902C2
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЯГОЙ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ 2009
  • Иноземцев Александр Александрович
  • Савенков Юрий Семенович
  • Саженков Алексей Николаевич
RU2406849C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ ОТКЛОНЕНИЯ ПАРАМЕТРОВ В ГАЗОВЫХ ТУРБИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 1995
  • Мирски Сол
  • Бэтсон Бретт У.
  • Староселски Наум
  • Нараянан Кришнан
RU2168044C2
СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ САМОЛЕТА 2003
  • Петров В.М.
  • Воробьев А.В.
  • Куликов В.Е.
  • Харьков В.П.
RU2249540C2
US 4594852 A,17.06.1986
US 5142860 A1, 01.09.1992.

RU 2 578 931 C1

Авторы

Канахин Юрий Александрович

Куприк Виктор Викторович

Марчуков Евгений Ювенальевич

Стародумова Ирина Михайловна

Даты

2016-03-27Публикация

2014-12-30Подача