Изобретение относится к области теплоэнергетики, а более точно - к утилизации тепла и очистке газов энергетической установки, и может найти применение в химической, металлургической, топливно-энергетической и других отраслях промышленности.
Аналогом заявляемому устройству по технической сущности является пылегазоуловитель-концентратор по патенту РФ на изобретение №2108849, МПК B01D 47/04, содержащий корпус, в котором установлены газораспределительная решетка и каплеуловитель, система водоподпитки и слива отработанной жидкости и компенсирующее устройство.
Газ в пылегазоуловитель-концентратор необходимо подавать под давлением, так как необходимо обеспечить барботирование жидкости до образования пены. Далее газ проходит разделительную сетку, на поверхности которой оседают примеси газа. Процесс очистки газа в пенной среде не является достаточно эффективным, при этом в аппарате отсутствует ступень тонкой очистки газа.
Известно изобретение, по содержанию ступеней очистки наиболее близкое к заявленному устройству для очистки генераторного газа. Таким является устройство для утилизации тепла конденсации водяного пара и очистки уходящих газов энергетической установки (Патент РФ №2484402 МПК F28C 3/06 2006 г.).
Устройство включает в себя две ступени очистки, установленные последовательно вертикально в едином корпусе, соединенным с патрубком ввода чистого жидкого абсорбента и патрубком ввода загрязненного газа. Предварительная ступень очистки содержит сухой циклон с тангенциальным щелевым подводом очищаемого газа. Основная ступень представляет собой блок утилизации тепла с очисткой в виде центробежно-барботажного аппарата с жидким абсорбентом, который гидравлически связан по газу с выходным патрубком сухого циклона. Центробежно-барботажный аппарат с жидким абсорбентом вертикально установлен над сухим циклоном и заключен в дополнительный защитный герметичный кожух, выполненный в виде полого цилиндрического теплообменника. Основная ступень очистки имеет патрубок вывода грязного абсорбента. В верхней части корпуса расположен коллектор с входным патрубком для ввода чистого жидкого абсорбента в основную ступень очистки.
Устройство обеспечивает двойную очистку уходящих газов, благодаря чему повышается эффективность утилизации тепла и очистки уходящих газов.
Недостатками данного изобретения, принятого за прототип, является то, что данная система на первой ступени очистки включает в себя сухой циклон с тангенциальным щелевым подводом очищаемого газа. При движении неочищенного газа, который в своем составе содержит смолистые соединения, образуется налет в виде пленки на поверхности щелей. В результате данного процесса ограничится или прекратится полностью подача газа. Газ имеет высокую скорость движения, и механические загрязнения повлияют на износ поверхностей циклона.
Задачей заявляемого изобретения является устранение вышеперечисленных недостатков, присущих прототипу, и повышение эффективности очистки газа путем создания и реализации принципиально новой конструкции устройства с достижением технического результата, заключающегося в получении пара и парогазовой смеси с отходящим газом, с дальнейшей конденсацией пара и очисткой газа от примесей микрокаплями конденсата, с осаждением и коагуляцией их в абсорбере и окончательной тонкой очисткой газа в пористом фильтре.
Задача и технический результат достигаются следующим образом.
Установка для очистки генераторного газа, как и прототип, содержит корпус с патрубком для вывода грязного жидкого абсорбента и с патрубком вывода очищенного газа, коллектор с патрубком для ввода чистого жидкого абсорбента, патрубок для ввода загрязненного газа и две ступени очистки загрязненного газа, из которых основная является ступенью мокрой очистки, а вторая - ступенью сухой очистки.
В отличие от прототипа основная ступень очистки в заявляемой установке состоит из смесителя, соединенного с патрубком для ввода загрязненного газа и посредством трубопровода - с коллектором, адсорбционного фильтра и трубопровода-охладителя, соединяющего смеситель с адсорбционным фильтром. Адсорбционный фильтр выполнен из насыпного или из волокнистого материала. Отличием от прототипа является то, что ступень сухой очистки - заключительная. Она выполнена в виде вертикально установленного пористого фильтра с центральным каналом для прохода очищаемого газа из адсорбционного фильтра. Коллектор в заявляемой установке расположен в нижней части корпуса, а адсорбционный фильтр и пористый фильтр установлены в корпусе сверху коллектора и с зазором относительно стенок корпуса. Адсорбционный фильтр и пористый фильтр разделены между собой перегородкой с центральным патрубком. Помимо этого патрубок для вывода отработанного жидкого абсорбента выполнен в нижней части адсорбционного фильтра, а патрубок для вывода очищенного газа соединен с зазором между корпусом и пористым фильтром. Внутри трубопровода, соединяющего коллектор со смесителем, установлен жиклер. Предпочтительно, чтобы конец трубопровода, соединяющего коллектор со смесителем, был установлен в смесителе ниже конца патрубка для ввода загрязненного газа. В верхних слоях абсорбент имеет более высокую температуру, что усиливает образование парогазовой смеси в смесителе. В частном случае коллектор снабжен патрубком для слива жидкого абсорбента из отстойной зоны. Наружные поверхности трубопровода-охладителя выполнены с ребрами. Соотношение длины L и диаметра D трубопровода-охладителя соответствует формуле:
где:
Pохл - мощность тепловых потерь, переданная трубопроводом-охладителем среде, [Вт];
αохл - коэффициент теплоотдачи с поверхности трубопровода-охладителя, ;
kр - количество ребер трубопровода-охладителя;
Tпгс - температура парогазовой смеси,
Tн - температура насыщения парогазовой смеси, [K°];
То - температура окружающей среды, [K°];
cг - теплоемкость газа, ;
cв - теплоемкость чистого жидкого абсорбента, ;
Vг - расход очищаемого газа, [м3/с];
Vв - расход чистого жидкого абсорбента, [м3/с];
Tг - температура генераторного газа, [K°];
Tв - начальная температура жидкого абсорбента, [K°].
С помощью трубопровода-охладителя основной ступени очистки происходит отвод теплоты от парогазовой смеси и конденсация жидкостных паров. При движении по трубопроводу-охладителю происходит захват микрозагрязнений газа микрокаплями жидкого абсорбента, в качестве которого используется жидкость с высокой поверхностной активностью (вода, масло и др.). Тем самым происходит предварительная очистка газа в основной ступени. Для эффективной конденсации жидкостных паров важно соотношение длины трубопровода к его диаметру. Приведенная формула получена на основании общеизвестных теплотехнических зависимостей.
Микрокапли рабочей жидкости (жидкого абсорбента) с загрязнениями адсорбируются в фильтрующем материале (насыпном или волокнистом) адсорбционного фильтра и коагулируются. При этом жидкость (конденсат) сливается в отстойную зону адсорбционного фильтра и периодически удаляется из него через патрубок для вывода отработанного жидкого абсорбента. Более тонкая очистка газа происходит во второй ступени с помощью пористого фильтра. В частном случае наружные поверхности корпуса установки имеют ребра. Наличие ребер у трубопровода-охладителя и корпуса обеспечивает воздушное охлаждение указанным поверхностям. Коллектор может быть снабжен клапаном уровня жидкости, используемой в качестве абсорбента.
Изобретение поясняется чертежом, на котором изображен общий вид заявляемой установки.
Установка содержит смеситель 5 с патрубком 1 для ввода загрязненного газа, коллектор 3 для чистого жидкого абсорбента 4, соединенный трубопроводом со смесителем 5. Внутри трубопровода установлен жиклер 2. Смеситель 5 посредством трубопровода-охладителя 6 соединен с адсорбционным фильтром 7. Смеситель 5, трубопровод-охладитель 6 и адсорбционный фильтр 7 образуют первую ступень очистки загрязненного генераторного газа. Заключительная ступень очистки генераторного газа является ступенью тонкой, сухой очистки и выполнена в виде пористого фильтра 8, выполненного с центральным каналом для прохода очищаемого газа. С пористым фильтром 8 соединен боковой патрубок 9 для выхода очищенного газа. Коллектор 3, адсорбционный фильтр 7 и пористый фильтр 8 размещены в едином корпусе. Адсорбционный фильтр 7 и пористый фильтр 8 установлены в корпусе с зазором и разделены между собой перегородкой 10. В центре перегородки 10 выполнен патрубок 11, соединяющий адсорбционный фильтр 7 с центральным каналом пористого фильтра 8. Адсорбционный фильтр 7 выполнен из насыпного или из волокнистого материала. Пористый фильтр 8 может быть выполнен из открытого пористого пенополиуретана. Для регулирования уровня жидкого абсорбента 4 в коллекторе 3 служит клапан 12. Для слива жидкого абсорбента 4 из отстойной зоны коллектора 3 служит патрубок с краном 13. В качестве жидкого абсорбента (чистого абсорбента) может быть использована вода или масло. Патрубок 14 для вывода отработанного жидкого абсорбента (конденсата с загрязнениями) выполнен в нижней части адсорбционного фильтра 7. Наружные поверхности трубопровода-охладителя 6 выполнены с ребрами. Наружные поверхности корпуса установки тоже имеют ребра. Наличие ребер обеспечивает воздушное охлаждение указанным поверхностям.
Установка работает следующим образом. В смеситель 5 через патрубок 1 подается загрязненный газ и дозировано через жиклер 2 самотеком поступает чистый абсорбент (рабочая жидкость) 4 из коллектора 3. Уровень жидкости в коллекторе 3 регулируется с помощью клапана 12. В смесителе 5 образуется парогазовая смесь, которая через трубопровод-охладитель 6 поступает в адсорбционный фильтр 7. Там, по мере движения смеси вверх, происходит конденсация жидкостно-паровой фазы с коагуляцией смолистых соединений и сажи на микрокаплях жидкости, которая стекает на дно адсорбционного фильтра 7 и выводится через патрубок 14. Первично очищенный газ проходит через патрубок 11 в пористый фильтр 8, где происходит окончательная (тонкая) очистка газа от прочих загрязнений. Очищенный газ отводится с помощью патрубка 9. Для удаления загрязнений из отстойной зоны коллектора 3 для рабочей жидкости предусмотрен кран 13 в сливном патрубке.
Для расчета необходимой длины при заданном диаметре трубопровода-охладителя 6 используют выведенные зависимости (1) и (2).
Пример расчета длины трубопровода-охладителя из нержавеющей стали диаметром D=0,024 м с количеством ребер kр=10. В качестве абсорбента используется вода.
Известно (И.Е. Идельчик. Справочник по гидравлическим сопротивлениям / Под. ред. М.О. Штейнберга. 3-е изд. перераб. и доп. - М. Машиностроение, 1992. - 672 с.), что для воды и генераторного газа значения показателей, входящих в формулы (1) и (2), составляют:
kр=10;
Тпгс=537 [K°];
Тн=373 [K°];
Тo=293 [K°];
Vг=0,022 [м3/с];
Vв=6,9941·10-7 [м3/с];
Tг=533 [K°];
Tв=333 [K°].
Сначала по формуле (2) находим мощность тепловых потерь для трубопровода-охладителя Pохл. Она составляет 7951,617 Вт. Затем вычисляем длину трубопровода-охладителя по формуле (1):
L=129,17-0,024=3,1 м
Следовательно, для конкретного примера при диаметре трубопровода-охладителя, равном 0,024 м, и количестве ребер 10, его длина L должна составлять 3,1 м. Именно при таком соотношении (для приведенного примера) происходит эффективная конденсация жидкостных паров с микрозагрязнениями газа в основной ступени.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КРИОГЕННОЙ ВИНТЕРИЗАЦИИ МАСЕЛ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2003 |
|
RU2278895C2 |
СПОСОБ УЛАВЛИВАНИЯ И РЕКУПЕРАЦИИ ПАРОВ УГЛЕВОДОРОДОВ И ДРУГИХ ЛЕГКОКИПЯЩИХ ВЕЩЕСТВ ИЗ ПАРОГАЗОВЫХ СМЕСЕЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2004 |
|
RU2316384C2 |
УГЛЕВЫЖИГАТЕЛЬНАЯ ПЕЧЬ | 2013 |
|
RU2574051C2 |
ПАРОГАЗОВАЯ ТУРБОУСТАНОВКА | 2007 |
|
RU2359135C2 |
Массообменный аппарат | 1973 |
|
SU722550A1 |
ПАРОГАЗОВАЯ ТУРБОУСТАНОВКА | 2007 |
|
RU2362890C2 |
ТРАНСПОРТНОЕ СРЕДСТВО НА ГАЗОВОЙ ПОДУШКЕ | 2007 |
|
RU2356764C1 |
РЕГЕНЕРАТИВНЫЙ ФИЛЬТР ДЛЯ ОЧИСТКИ ГАЗА | 2014 |
|
RU2560385C1 |
СТАНЦИЯ ПРИГОТОВЛЕНИЯ ПИТЬЕВОЙ ВОДЫ | 2007 |
|
RU2355648C1 |
Установка для термической деструкции преимущественно твердых коммунальных отходов с получением углеродистого остатка | 2020 |
|
RU2747898C1 |
Заявленное изобретение относится к утилизации тепла и очистке газов энергетической установки в химической, металлургической, топливно-энергетической и прочих отраслях промышленности. Установка содержит корпус, в котором размещены коллектор для чистого жидкого абсорбента, адсорбционный и пористый фильтры. С коллектором посредством трубопровода соединен смеситель с патрубком для ввода загрязненного генераторного газа. Очистка генераторного газа производится в две ступени. Первая ступень является ступенью мокрой очистки и включает смеситель и соединенный со смесителем посредством трубопровода-охладителя адсорбционный фильтр. В смесителе образуется парогазовая смесь, при движении которой по трубопроводу-охладителю происходит конденсация жидкостных паров и захват микрозагрязнений газа микрокаплями жидкого абсорбента. Микрокапли жидкого абсорбента адсорбируются, коагулируются в адсорбционном фильтре и выводятся через патрубок, расположенный в нижней части адсорбционного фильтра. Вторая ступень является ступенью тонкой, сухой очистки газа от оставшихся загрязнений и выполнена в виде пористого фильтра. Отвод очищенного газа происходит через патрубок из зазора между корпусом и пористым фильтром. Технический результат: повышение эффективности очистки газа. 4 з.п. ф-лы, 1 ил.
1. Установка для очистки генераторного газа, содержащая корпус с патрубком для вывода грязного жидкого абсорбента и с патрубком вывода очищенного газа, коллектор с патрубком для ввода чистого жидкого абсорбента, патрубок для ввода загрязненного газа и две ступени очистки загрязненного газа, из которых основная является ступенью мокрой очистки, а вторая - ступенью сухой очистки, отличающаяся тем, что основная ступень очистки состоит из смесителя, соединенного с патрубком для ввода загрязненного газа и посредством трубопровода - с коллектором, адсорбционного фильтра, выполненного из насыпного или из волокнистого материала, и трубопровода-охладителя, соединяющего смеситель с адсорбционным фильтром, а ступень сухой очистки является заключительной и выполнена в виде вертикально установленного пористого фильтра с центральным каналом для прохода очищаемого газа из адсорбционного фильтра, при этом коллектор расположен в нижней части корпуса, адсорбционный фильтр и пористый фильтр установлены в корпусе с зазором относительно его стенок сверху коллектора и разделены между собой перегородкой с центральным патрубком, помимо этого патрубок для вывода отработанного жидкого абсорбента выполнен в нижней части адсорбционного фильтра, а патрубок для вывода очищенного газа соединен с зазором между боковой стенкой корпуса и пористым фильтром, причем внутри трубопровода, соединяющего коллектор со смесителем, установлен жиклер, наружные поверхности трубопровода-охладителя выполнены с ребрами, а соотношение длины L и диаметра D трубопровода-охладителя соответствует формуле:
где
Pохл=(cг·Vг·(Tг - Tн) - Vв·(cв·(Tн - Tв))),
где:
Pохл - мощность тепловых потерь, переданная трубопроводом-охладителем среде, [Вт];
αохл - коэффициент теплоотдачи с поверхности трубопровода-охладителя, ;
kр - количество ребер трубопровода-охладителя;
Tпгс - температура парогазовой смеси, [K°];
Tн - температура насыщения парогазовой смеси, [K°];
Тo - температура окружающей среды, [K°];
cг - теплоемкость газа, ;
cв - теплоемкость чистого жидкого абсорбента, ;
Vг - расход очищаемого газа, [м3/с];
Vв - расход чистого жидкого абсорбента, [м3/с];
Tг - температура генераторного газа, [K°];
Tв - начальная температура жидкого абсорбента, [K°].
2. Установка по п. 1, отличающаяся тем, что наружные поверхности корпуса установки выполнены с ребрами.
3. Установка по п. 1, отличающаяся тем, что коллектор снабжен клапаном уровня жидкого абсорбента.
4. Установка по п. 1, отличающаяся тем, что конец трубопровода, соединяющего коллектор со смесителем, установлен в смесителе ниже конца патрубка для ввода загрязненного газа.
5. Установка по п. 1, отличающаяся тем, что коллектор снабжен патрубком для слива жидкого абсорбента из отстойной зоны.
УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ ТЕПЛА КОНДЕНСАЦИИ ВОДЯНОГО ПАРА И ОЧИСТКИ УХОДЯЩИХ ГАЗОВ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 2011 |
|
RU2484402C1 |
Скруббер | 1979 |
|
SU946616A1 |
УСТРОЙСТВО И СПОСОБ ОЧИСТКИ ТЕХНОЛОГИЧЕСКОГО ГАЗА В УСТАНОВКЕ ДЛЯ ПАЙКИ ОПЛАВЛЕННЫМ ПРИПОЕМ | 2006 |
|
RU2389532C2 |
СПОСОБ ОЧИСТКИ И ОСУШКИ ШАХТНОГО ГАЗА И ПОПУТНОГО НЕФТЯНОГО ГАЗА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2535695C1 |
US 2010266472 A1, 21.10.2010 | |||
US 2011011261 A1, 20.01.2011. |
Авторы
Даты
2016-05-20—Публикация
2014-11-25—Подача