Изобретение относится к аналитической химии, а именно к способам определения содержания метионина в водных растворах методом циклической вольтамперометрии.
Предложена методика ускоренного амперометрического определения метионина в лекарственных средствах, основанная на титровании аминокислот, фотогенерируемым йодом. Нижний предел определения метионина составляет 0,06 мкг. Применение данного способа определения аминокислот позволяет снизить время единичного определения за счет анализа меньших проб и отсутствия рутинного титрования. Метод не требует применения дорогостоящего оборудования. [Турусова Е.В., Григорьева Л.А., Лыщиков А.Н., Насакин О.Е. Использование фотогенерированного йода для оценки // Фармацевтические науки. - 2014. - №6. - С. 951-955].
Предложена методика электрохимического определения метионина в моче человека в режиме квадратно-волновой циклической вольтамперометрии на пастовом электроде, приготовленным на основе нанотрубок и бензоферроцена в фосфатном буферном растворе фонового электролита рН 7 при сканировании потенциала от 0,2 до 1,2 В со скоростью развертки потенциала 100 мВ/с. Ток метионина линейно возрастает в диапазоне концентраций 1,0·10-7 до 2,0·10-4 моль/л. Предел обнаружения составляет 58 нмоль/л. [Beitollaxi Н., Mohadezi A., Ghorbani F. and all. Electrocatalytic measurement of methionine concentration with a carbon nanotube paste electrode modified with benzoylferrocene // Chinese Journal of Catalysis. - 2013. - V. 34. - Р. 1333-1338].
Предложена методика электрохимического определения метионина в режиме дифференциально-импульсной вольтамперометрии на угольно-пастовом электроде, модифицированном цистеамином и коллоидными частицами золота в фосфатном буферном растворе фонового электролита рН 7 при сканировании потенциала от 0,0 до 1,2 В со скоростью развертки потенциала 50 мВ/с.Ток метионина линейно возрастает в диапазоне концентраций 1,0·10-6 до 1,0·10-4 моль/л. Предел обнаружения составляет 5,9·10-7 моль/л. [Agui L., Manso J. Vanez-Sedeno P. and all. Colloidal-gold cyateamine-modified carbon paste electrodes as suitable electrode materials for the electrochemical determination of sulphur-containing compounds. Application to the determination of methionine // Talanta. - 2004. - V. 64. -P. 1041-1047]
Предложена методика амперометрического детектирования метионина на поверхности графитового электрода, модифицированного гексацианоферрата (II) рутения (III) в условиях проточно-инжекционного анализа. Нижняя граница определения метионина равна 5·10-9 М. [Шайдарова Л.Г., Зиганшина С.А., Тихонова Л.Н., Будников Г.К. Электрокаталитическое окисление и проточно-инжекционное определение серосодержащих аминокислот на графитовых электродах, модифицированных пленкой из гексацианоферрата рутения // Журнал аналитической химии. - 2003. - Т. 58. - №12, С. 1277-1283].
Электрохимическое определение метионина в плазме крови человека проводили методом дифференциально-импульсной вольтамперометрии в области концентраций 50-500 µМ с пределом обнаружения 2,7·10-8 М. [Jeevagan A.J., John S.A. Electrochemical determination of L-methionine using the electropolymerized film of non-peripheral amine substituted Cu (II) phthalocyanine on glassy carbon electrode // Bioelectrochemistry. - 2012. - V. 85. P. 50-55].
Электрохимическое определение метионина проводили методом вольтамперометрии в таблетках, на золотом электроде, модифицированном С60-фуллереном в растворе фонового электролита 0,1 М KNO3 при сканировании потенциала от 0,0 до +1,2 В. Предел обнаружения метионина на золотом электроде, модифицированном С60-фуллереном, составляет обнаружения 8,2·10-6 М [Tan W.T, Gohb J.K. Department of electrochemical oxidation of methionine mediated by a fullerene-C60 modified gold electrode // Electroanalysis. - 2008. - V. 20. - №.22. - P. 2447-2453] (прототип).
В работе была поставлена задача снизить предел и нижнюю границу определяемых содержаний метионина по величине обратного пика на катодной ветви циклической кривой, полученного на графитовом электроде (ГЭ), модифицированном коллоидными частицами золота методом циклической вольтамперометрии.
Поставленная задача достигается тем, что проводят электроокисление метионина на поверхности модифицированного ГЭ. Модифицирование поверхности ГЭ коллоидными частицами золота проводят золем золота (мольное соотношение HAuCl4:Na3C6H5O7:NaBH4=1:15:5) в течение 300 с при потенциале электролиза ЕЭ=1,0 В. Вольтамперные зависимости регистрируют в растворе фонового электролита 0,1 М NaOH при скорости развертки равной 100 мВ/с в диапазоне потенциалов от -1,0 до 1,0 В относительно насыщенного хлоридсеребряного электрода (нас.х.э.). Концентрацию метионина определяют по высоте обратного пика на катодной ветви циклической кривой от минус 0,2 до плюс 0,1 В. Новым в способе является то, что для получения полезного сигнала, зависящего от концентрации метионина, используется ГЭ, модифицированный коллоидными частицами золота, позволяющего увеличить каталитическую активность за счет увеличения рабочей поверхности электрода, увеличением числа активных центров и большей электрокаталитической активностью коллоидных частиц золота по сравнению с ионами золота (III).
В предлагаемом способе впервые установлена способность метионина окисляться на ГЭ, модифицированном коллоидными частицами золота, полученными по боргидридцитратной методике.
В качестве индикаторного электрода применяли ГЭ, модифицированный коллоидными частицами золота (в прототипе применяли золотой электрод, модифицированный С60-фуллереном).
Использование таких электродов обусловлено высокой химической и электрохимической устойчивостью графита, широкой областью рабочих потенциалов, простотой нанесения модификатора, механического обновления поверхности и требованиями техники безопасности (не используются опасные или вредные вещества при работе с электродом).
В данном изобретении предлагается способ модифицирования поверхности электрода коллоидными частицами золота из золя (мольное соотношение HAuCl4:Na3C6H5O7:NaBH4=1:15:5). Модифицированная поверхность электрода чувствительна к присутствию метионина в растворе, что позволяет судить о его наличии.
Предлагаемый в заявляемом изобретении фон 0,1 М NaOH позволяет определять низкие содержания метионина с хорошей воспроизводимостью при минимальной концентрации равной 1·10-13 моль/л, что соответствует минимально определяемой концентрации (в прототипе предел обнаружения 8,2·10-6 М).
На фиг. 1 представлены циклические вольтамперные кривые метионина с поверхности графитового электрода, предварительно электрохимически модифицированного коллоидными частицами золота. Кривая а - фон 0,1 М NaOH, кривая b ветвь - CMet=1·10-13 моль/л, кривая с ветвь - CMet=2·10-13 моль/л.
Таким образом, установленные условия впервые позволили количественно определять метионин на основе реакции электрохимического окисления метионина на поверхности графитового электрода, предварительно электрохимически модифицированного коллоидными частицами золота.
Предлагаемый вольтамперометрический способ позволил улучшить метрологические характеристики анализа метионина, повысить чувствительность определения (1·10-13 моль/л), что на 7 порядков ниже по сравнению с прототипом (табл. 1).
Примеры конкретного выполнения:
Пример 1. Измерения были проведены в модельном растворе.
Графитовый электрод помещают в электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл золя золота (мольное соотношение HAuCl4:Na3C6H5O7:NaBH4=1:15:5). Проводят электролиз раствора для модификации ГЭ коллоидными частицами золота при условии: ЕЭ=-1,0 В, τЭ=300 с. Полученный модифицированный графитовый электрод ополаскивают бидистиллированной водой и помещают в другую электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл 0,1 М раствора NaOH. Не проводя накопления, регистрируют анодную ветвь, а затем катодную ветвь циклической вольтамперной кривой фонового электролита при скорости развертки 100 мВ/с, начиная от потенциала минус 1,0 и заканчивая плюс 1,0 В. На катодной ветви вольтамперной кривой фонового электролита наблюдается обратный максимум в диапазоне потенциалов от минус 0,2 до плюс 0,1 В (Фиг. 1, кривая а). При добавлении раствора метионина (первая добавка) происходит уменьшение высоты обратного максимума в диапазоне потенциалов от минус 0,2 до плюс 0,1 В (Фиг. 1, кривая b). При добавлении второй добавки раствора метионина происходит пропорциональное увеличение высоты обратного максимума в диапазоне потенциалов от минус 0,2 до плюс 0,1 В (Фиг 1, кривая с).
Пример 2. Измерения были проведены в водопроводной воде.
Графитовый электрод помещают в электрохимическую ячейку (кварцевый стаканчик), заполненную 10 м л золя золота (мольное соотношение HAuCl4:Na3C6H5O7:NaBH4=1:15:5). Проводят электролиз раствора для модификации ГЭ коллоидными частицами золота при условии: ЕЭ=-1,0 В, τЭ=300 с. Потом полученный модифицированный графитовый электрод ополаскивают бидистиллированной водой и помещают в другую электрохимическую ячейку (кварцевый стаканчик), заполненную 10 мл водопроводной воды с добавлением 1 мл 1 М раствора NaOH. Не проводя накопления, регистрируют анодную ветвь, а затем катодную ветвь циклической вольтамперной кривой фонового электролита при скорости развертки 100 мВ/с, начиная с потенциала минус 1,0 и заканчивая плюс 1,0 В. На катодной ветви вольтамперной кривой фонового электролита наблюдается обратный максимум в диапазоне потенциалов от минус 0,2 до плюс 0,1 В (Фиг. 2, кривая а).
В водопроводную воду добавляют 0,02 мл аттестованной смеси метионина концентрации 5·10-13 моль/дм3 и, не проводя накопления, регистрируют анодную ветвь, а затем катодную ветвь циклической вольтамперной кривой фонового электролита при скорости развертки 100 мВ/с, начиная с потенциала минус 1,0 и до плюс 1,0 В. На катодной ветви вольтамперной кривой фонового электролита наблюдается обратный максимум в диапазоне потенциалов от минус 0,2 до плюс 0,1 В (Фиг. 2, кривая b).
Затем добавляют 0,02 мл аттестованной смеси метионина концентрации 5·10-13 моль/дм3 и, не проводя накопления, регистрируют анодную ветвь, а затем катодную ветвь циклической вольтамперной кривой фонового электролита при скорости развертки 100 мВ/с, начиная с потенциала минус 1,0 и до плюс 1,0 В. На катодной ветви вольтамперной кривой фонового электролита наблюдается пропорциональный обратный максимум в диапазоне потенциалов от минус 0,2 до плюс 0,1 В (Фиг. 2, кривая с).
Таким образом, впервые установлена способность количественного определения метионина по обратным катодным пикам.
Предложенный способ прост, не используются токсические вещества из-за их негативного физиологического и биохимического действия. Способ может быть применен в любой биохимической лаборатории, имеющей компьютеризированные анализаторы типа ТА или полярограф. Предложенный способ может быть использован для определения метионина в водных растворах.
Изобретение относится к аналитической химии. Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, включает модифицирование графитовых электродов коллоидными частицами золота из золя золота в течение 300 с при потенциале накопления -1,0 В с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 M раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В, и определение концентрации метионина осуществляют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,20 до плюс 0,10 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает более чувствительный способ определения метионина в модельных водных растворах методом циклической вольтамперометрии. 2 ил., 1 табл., 2 пр.
Способ определения метионина в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота, отличающийся тем, что проводят модифицирование графитовых электродов коллоидными частицами золота из золя золота в течение 300 с при потенциале накопления -1,0 В с последующей регистрацией обратных пиков электроокисления метионина на катодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 M раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В, концентрацию метионина определяют по величине обратных максимумов вольтамперных кривых в диапазоне потенциалов от минус 0,20 до плюс 0,10 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей.
Tan W.T, Gohb J.K | |||
Способ получения молочной кислоты | 1922 |
|
SU60A1 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
- V | |||
Прибор для промывания газов | 1922 |
|
SU20A1 |
Машина для добывания торфа и т.п. | 1922 |
|
SU22A1 |
- P | |||
Приспособление для получения взрывов в двигателях внутреннего горения | 1913 |
|
SU2447A1 |
CN103654675A, 30.07.2014 | |||
JP2005069692A, 17.03.2005 | |||
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ МЕТИОНИНА В ВОДНЫХ РАСТВОРАХ | 2008 |
|
RU2366929C1 |
RU2003122254А, 20.02.2005. |
Авторы
Даты
2016-06-10—Публикация
2015-03-23—Подача