СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ РУД Российский патент 2016 года по МПК B03D1/02 B03B7/00 B03D103/02 

Описание патента на изобретение RU2588090C1

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации полиметаллических руд, медно-цинковых и других биметаллических руд.

Известны способы селективной флотации сульфидных руд по цианидной и бесцианидной технологии.

Способы флотации, связанные с применением солей синильной кислоты и ее производной для депрессии цинка, экологически опасны.

В способах безцианидной флотации руд этот недостаток устранен:

Способ флотационного обогащения сульфидных руд с использованием в качестве депрессора полиэтиленполиаминфосфорной кислоты (SU, а.с. №871832 кл. B03D 1/02,1981 г.).

Недостатками данного способа является использование в операции полифосфата - дорогого и дефицитного материала и его побочная способность изменять ионный состав жидкой фазы пульпы, что ухудшает показатели флотации.

Способ флотационного обогащения сульфидных руд, предусматривающий использование пиритных хвостов, предварительно обработанных сернистым натрием (RU, патент №2038860, кл. B03D 1/02,1992 г.).

Недостатками данного способа является использование минеральной части руды и соответственно негативное влияние изменчивости ее состава.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ флотационного обогащения сульфидных руд, включающий измельчение руды, осуществляемое в щелочной среде, создаваемой известью, кондиционирование пульпы с сернистым натрием и сульфатом цинка, введение собирателя и вспенивателя, флотацию сульфидов меди в пенный продукт (RU, патент №2054971, кл. B03D 1/018, 1993 г.).

По данному способу флотационного разделения сульфидных медно-цинковых руд предусматривается кондиционирование пульпы с сернистым натрием и сульфатом цинка в щелочной среде, формируемой известью, введение собирателя, в качестве которого применяется меркаптобензотиазол, и вспенивателя, при этом сульфиды меди и пирит флотируются в пенный продукт, а минералы цинка переходят в камерный продукт. В способе регламентируется соотношение расходов сернистого натрия, сульфата цинка и меркаптобензотиазола.

Недостатками этого способа являются:

низкая селективность по отношению к цинковым минералам, что обуславливает переход цинка в пенные продукты межцикловых и медно-свинцовых продуктов, что существенно ухудшает качественные характеристики получаемых медного и свинцового концентратов;

применение меркаптобензотиазола - экологически небезопасного реагента.

Технический результат, на достижение которого направлено настоящее техническое решение, заключается в повышении эффективности и интенсификации процесса флотации медно-свинцово-цинковых руд с одновременным улучшением его качества, за счет повышения в нем содержаний извлекаемых металлов.

Указанный технический результат достигается тем, что в способе флотационного обогащения сульфидных руд, включающем измельчение руды, осуществляемое в щелочной среде, создаваемой известью, кондиционирование пульпы с сернистым натрием и сульфатом цинка, введение собирателя и вспенивателя, флотацию сульфидов меди в пенный продукт, согласно изобретению, измельченный продукт поступает в операцию контактирования с реагентами и далее в I межцикловую флотацию, камерный продукт которой после доизмельчения и контактирования с реагентами поступает во II межцикловую флотацию, причем пенные продукты межцикловых операций после агитации с реагентами поступают в межцикловую перечистную операцию, пенный продукт которой представляет собой медный концентрат, камерный продукт II межцикловой флотации после контактирования с реагентами поступает в I основную медно-свинцовую флотацию и после доизмельчения во II основную медно-свинцовую флотацию, пенные продукты которых, объединившись с пенным продуктом и камерным продуктом межцикловой перечистной операции, поступают после контактирования в цикл перечистных операций, концентрат которых представляет собой медно-свинцовый продукт - питание цикла одноименной селекции, а камерный продукт контрольной коллективной медно-свинцовой флотации является питанием цинк-пиритного цикла.

Кроме того, указанный технический результат достигается тем, что: в качестве депрессора может быть использована смесь сернистого натрия, сульфита натрия и цинкового купороса в соотношении: суммарная массовая доля сернистого натрия и сульфита натрия к массовой доле цинкового купороса 1:2, при этом диапазон отклонения не более 10% отн.

Кроме того, указанный технический результат достигается тем, что в качестве собирателя в межцикловой флотации может быть использован тионокарбамат.

Кроме того, указанный технический результат достигается тем, что в качестве собирателя в основных и контрольной медно-свинцовой флотациях может быть использована смесь дитиофосфината и ксантогената, в соотношении 1:1.

Кроме того, указанный технический результат достигается тем, что пенные продукты межцикловых операций флотации поступают в операцию механоактивации перед межцикловой перечистной операцией.

Кроме того, указанный технический результат достигается тем, что камерный продукт межцикловой перечистной флотации поступает в операцию механоактивации перед первой перечистной операцией коллективного медно-свинцового концентрата.

А также тем, что в качестве депрессора в агитации перед межцикловой флотацией может быть использована карбоксиметилцелллоза.

Кроме того, указанный технический результат достигается тем, что перечистной цикл медно-свинцовых перечисток осуществляется в следующем диапазоне pH: первая перечистка 8÷12, вторая перечистка 7÷9, третья перечистка 7÷8.

Предложенный способ флотации полиметаллических руд основан на повышении флотационной селективности в циклах межцикловой, основных и контрольной флотаций и уменьшении содержания цинка в пенном продукте коллективного цикла.

На чертеже изображена технологическая схема предлагаемого способа флотационного обогащения полиметаллических руд.

Способ осуществляют следующим образом.

Сульфидная руда поступает в цикл рудоподготовки, включающий измельчение в I стадии до крупности 55% класса - 74 мкм в щелочной среде (pH пульпы 9,5-10,2), создаваемой подачей (500-2000 г/т) извести в присутствии серосодержащего депрессора - смеси сернистого натрия (100-150 г/т), сульфита натрия (100-150 г/т) и цинкового купороса (400-500 г/т), в соотношении (сумма сернистого натрия + сульфит натрия): цинковый купорос 1:2 и тионокарбамат (1-10 г/т), агитации с депрессором минералов пустой породы КМЦ (200-500 г/т), подготовленный материал поступает на I межцикловую флотацию, которая проводится в присутствии вспенивателя - МИБК (1-3 г/т) с получением концентрата I межцикловой флотации.

Камерный продукт I межцикловой флотации поступает в цикл доизмельчения, включающий операцию классификации и операцию доизмельчения, причем в измельчение подается смесь серосодержащих депрессоров сернистого натрия (100-150 г/т), сульфита натрия (100-150 г/т) и цинкового купороса (400-500 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2, измельченный материал поступает на агитацию с собирателем тионокарбамат (1-5 г/т) и далее во II межцикловую флотацию.

Пенный продукт I и II межцикловой флотации поступает в операцию агитации, со смесью серосодержащих депрессоров: сернистого натрия (10-30 г/т), сульфита натрия (10-30 г/т) и цинкового купороса (20-120 г/т), в соотношении (сумма сернистого натрия + сульфит натрия): цинковый купорос 1:2.

Подготовленный материал поступает в межцикловую перечистную операцию. В эту же операцию подается тионокарбамат с расходом 1-3 г/т.

Камерный продукт II межцикловой флотации поступает в цикл доизмельчения, включающий операцию классификации и операцию доизмельчения, куда подается смесь серосодержащих депрессоров: сернистого натрия (80-100 г/т), сульфита натрия (80-100 г/т), и цинкового купороса (300-400 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2, и собиратель. В качестве собирателя используется смесь дитиофосфината (1-5 г/т) и ксантогената (1-5 г/т), в соотношении 1:1. Подготовленный материал подается в I основную медно-свинцовую флотацию.

Пенный продукт I основной медно-свинцовой флотации поступает в цикл обработки с реагентами, включающий операции агитации в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (10-30 г/т), сульфита натрия (10-30 г/т) и цинкового купороса (40-120 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2. Подготовленный материал поступает в перечистной цикл. Пенный продукт третьей перечистки представляет собой коллективный медно-свинцовый концентрат.

Камерный продукт I основной медно-свинцовой флотации поступает в цикл доизмельчения, включающий операцию классификации и операцию доизмельчения, куда подается депрессор - смесь серосодержащих депрессоров: сернистого натрия (80-100 г/т), сульфита натрия (80-100 г/т) и цинкового купороса (300-400 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2, и собиратель - смесь дитиофосфината (1-5 г/т) и ксантогената (1-5 г/т), в соотношении 1:1. Подготовленный материал поступает на II основную медно-свинцовую флотацию.

Камерный продукт II основной медно-свинцовой флотации поступает в цикл обработки с реагентами, включающий операции агитации в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (20-60 г/т), сульфита натрия (20-60 г/т) и цинкового купороса (40-250 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2, и собирателя - смеси дитиофосфината (1-5 г/т) и ксантогената (1-5 г/т), в соотношении 1:1. Подготовленный материал поступает на контрольную медно-свинцовую флотацию.

Камерный продукт межцикловой перечистной флотации и пенный продукт II основной медно-свинцовой флотации поступают в цикл обработки с реагентами, включающий операции агитации в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (20-60 г/т), сульфита натрия (20-60 г/т) и цинкового купороса (40-250 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2.

В зависимости от особенностей флотации подача реагентов может быть сосредоточенной или дробной.

Вместо применяемых при флотации реагентов могут быть использованы их производные или аналоги, применение которых при современном состоянии уровня техники и технологии позволяет снизить себестоимость обогащения.

Предлагаемый способ описан в конкретных примерах, и его результат приведен в таблице.

В примерах сульфидная руда представлена полиметаллической рудой Артемьевского месторождения (Казахстан).

Пример 1 - реализация способа-прототипа

Навеску полиметаллической руды измельчали с подачей извести (2000 г/т) до крупности 55% класса - 74 мкм при pH=10-10,5, затем агитировали с сернистым натрием (150 г/т) и сульфатом цинка, после чего ввели меркаптобензотиазол (40 г/т) и далее кондиционирование с ксантогенатом (50 г/т) и МИБК (5 г/т) флотацию в течение 10 мин и после двух перечисток чернового концентрата получают готовый медно-свинцовый концентрат.

Пример 2 - реализация предлагаемого способа

Исходное питание - полиметаллическая руда, измельченная в I стадии до крупности 55% класса - 74 мкм в щелочной среде (pH пульпы 9,5), создаваемой известью натрия (2000 г/т) в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (50 г/т), сульфита натрия (50 г/т), и цинкового купороса (100 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2 поступает на I межцикловую флотацию, которая проводится в присутствии собирателя - тионокарбамата (30 г/т) и вспенивателя - МИБК (2 г/т) с получением пенного продукта. Камерный продукт I межцикловой флотации после II стадии измельчения до крупности 70 мкм % класса - 74 мкм в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (50 г/т), сульфита натрия (50 г/т), и цинкового купороса (100 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2 поступают на II межцикловую флотацию в присутствии тионокарбамата (30 г/т) с получением концентрата II межцикловой флотации. Пенный продукт I основной медно-свинцовой флотации поступает в цикл обработки с реагентами, включающий операции агитации в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (10-30 г/т), сульфита натрия (10-30 г/т), и цинкового купороса (40-120 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2. Подготовленный материал поступает в перечистной цикл. Пенный продукт третьей перечистки представляет собой коллективный медно-свинцовый концентрат.

Хвосты II межцикловой флотации агитируют в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (50 г/т), сульфита натрия (50 г/т) и цинкового купороса (100 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2, поступают на I основную медно-свинцовую флотацию в присутствии тионокарбамата (30 г/т). Камерный продукт I основной медно-свинцовой флотации поступает на III стадию измельчения до крупности 86% класса - 74 мкм в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (50 г/т), сульфита натрия (50 г/т) и цинкового купороса (100 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2, поступает на II основную медно-свинцовую флотацию в присутствии тионокарбамата (30 г/т). Камерный продукт II основной медно-свинцовой флотации агитирует в присутствии депрессора - смеси серосодержащих депрессоров: сернистого натрия (50 г/т), сульфита натрия (50 г/т) и цинкового купороса (100 г/т), в соотношении (сумма сернистого натрия + сульфит натрия):цинковый купорос 1:2, поступает на контрольную медно-свинцовую флотацию в присутствии тионокарбамата (30 г/т).

Пример 3 - реализация предлагаемого способа осуществляется по примеру 2, но вместо тионокарбамата в межцикловой флотации используется тионокарбамат с расходом 1-5 г/т.

Пример 4 - реализация предлагаемого способа осуществляется по примеру 2, но в основных и контрольной медно-свинцовой флотациях использовалась смесь дитиофосфината (1-5 г/т) и ксантогената (1-5 г/т), в соотношении 1:1.

Пример 5 - реализация предлагаемого способа осуществляется по примеру 2, но пенные продукты межцикловых операций флотации поступают в операцию механоактивации перед межцикловой перечистной операцией.

Пример 6 - реализация предлагаемого способа осуществляется по примеру 2, но камерный продукт межцикловой перечистной флотации поступает в операцию механоактивации перед первой перечистной операцией коллективного медно-свинцового концентрата.

Пример 7 - реализация предлагаемого способа осуществляется по примеру 2, но в качестве депрессора в агитации перед межцикловой флотацией используется карбоксиметилцеллюлоза при расходе 150 г/т.

Пример 8 - реализация предлагаемого способа осуществляется по примеру 2, но в перечистном цикле медно-свинцовых перечисток осуществляется в следующем диапазоне pH: первая перечистка 8-12, вторая перечистка 7-9, третья перечистка 7-8.

Как показали проведенные исследования, только такое сочетание соответствующих реагентных режимов и технологических процессов позволяет наиболее эффективно осуществить флотацию сульфидных руд с получением концентрата межцикловой перечистной флотации, содержащего не менее 19% меди, при суммарном извлечении меди в коллективном цикле не менее 83%, а свинца не менее 63%; при этом потери цинка в коллективном цикле не превышают 8% (по способу прототипу аналогичные показатели составляют: по содержанию меди - 16%, извлечение меди в коллективном цикле 75%, по свинцу: извлечение 42%, а потери цинка в коллективном цикле составили 15,6% соответственно).

Сводные показатели флотации полиметаллических руд свидетельствуют о том, что:

По примеру 3, при использовании в межцикловых флотациях тионокарбамата при расходе 1-5 г/т, снижается содержание цинка в концентрате перечисток с 8,1% до 3,8%, в коллективном медно-свинцовой концентрате с 14,2 до 5,2%, а извлечение цинка в эти же продукты снижается с 15,57% до 7,75%.

По примеру 4, при использовании в качестве собирателя в основных и контрольных медно-свинцовых флотациях смеси дитиофосфината и ксантогената при расходе 1-5 г/т в соотношении 1:1 извлечение меди в концентрате головок возросло на 3,6%, а извлечение свинца в этот же продукт уменьшилось с 5,97% до 4,86%.

По примеру 5, с проведением предварительной механоактивации перед перечистной операции содержание меди в концентрате этой операции возросло с 19,3 до 20,3%, а извлечение меди в этот же продукт возросло на 3,2%.

По примеру 6, с подачей камерного продукта межцикловой перечистной флотации поступает в операцию механоактивации перед первой перечистной операцией коллективного медно-свинцового концентрата привело к увеличению содержания меди в коллективном Cu-Pb с 13,5 до 15% и соответственно возрастает извлечение меди в этот продукт на 2,27%.

По примеру 7, с использование карбоксиметилцеллюлозы в качестве депрессора перед межцикловой флотацией содержание меди в концентрате головок возросло с 21,3% до 23%, а извлечение в этот же продукт увеличилось на 3,4%.

По примеру 8, по рекомендуемому режиму pH водной фазы по перечисткам содержание свинца в Cu-Pb концентрате возросло до 20,9%, а извлечение свинца возросло до 80,9%, а извлечение цинка сократилось до 2,88%.

Как следует их вышеизложенного, предложенный способ флотационного обогащения сульфидных руд позволяет повысить эффективность и интенсифицировать процесс разделения сульфидных минералов, а также повысить извлечения минералов меди, свинца и в одноименные продукты с одновременным улучшением их качества, за счет повышения в нем содержаний извлекаемых металлов.

Похожие патенты RU2588090C1

название год авторы номер документа
СПОСОБ ФЛОТАЦИОННОГО РАЗДЕЛЕНИЯ КОЛЛЕКТИВНЫХ МЕДНО-СВИНЦОВЫХ КОНЦЕНТРАТОВ 2015
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
  • Назаров Юрий Павлович
  • Соловьева Лариса Михайловна
RU2586510C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД 2009
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
RU2397817C1
СПОСОБ ПРЯМОЙ СЕЛЕКТИВНОЙ ФЛОТАЦИИ СВИНЦОВО-ЦИНКОВЫХ РУД 2019
  • Александрова Татьяна Николаевна
  • Романенко Сергей Александрович
  • Ушаков Егор Константинович
  • Кусков Вадим Борисович
RU2713829C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД 2009
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
  • Назаров Юрий Павлович
  • Поперечникова Ольга Юрьевна
  • Арустамян Карен Михайлович
  • Михайлова Анна Владимировна
  • Окунева Маргарита Александровна
RU2398636C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД 2009
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
  • Соловьева Лариса Михайловна
  • Арустамян Армен Михайлович
  • Шумская Елена Николаевна
  • Турсунова Нина Борисовна
RU2404858C1
СПОСОБ КОМБИНИРОВАННОЙ ПЕРЕРАБОТКИ ТРУДНООБОГАТИМЫХ СВИНЦОВО-ЦИНКОВЫХ РУД 2011
  • Гаричев Сергей Николаевич
  • Новиков Дмитрий Николаевич
  • Брыксин Михаил Николаевич
  • Шехирев Дмитрий Витальевич
  • Панькин Александр Владимирович
RU2456357C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ РУД 2009
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
RU2397816C1
МОДИФИЦИРОВАННЫЙ РЕАГЕНТ ДЛЯ ФЛОТАЦИИ ЦИНКСОДЕРЖАЩИХ РУД ЦВЕТНЫХ МЕТАЛЛОВ 2012
  • Авербух Александра Васильевна
  • Орлов Станислав Львович
  • Стихина Марина Игоревна
  • Щербакова Зульфия Халиловна
  • Мамонов Сергей Владимирович
RU2496583C1
СПОСОБ СЕЛЕКТИВНОГО ВЫДЕЛЕНИЯ МЕДНЫХ МИНЕРАЛОВ В КОНЦЕНТРАТЫ ПРИ ОБОГАЩЕНИИ МЕДНО-ЦИНКОВЫХ ПИРИТСОДЕРЖАЩИХ РУД 2009
  • Кокорин Александр Михайлович
  • Лучков Николай Викторович
  • Смирнов Александр Олегович
RU2425720C1
СПОСОБ ФЛОТАЦИИ СУЛЬФИДНЫХ РУД ЦВЕТНЫХ МЕТАЛЛОВ 2008
  • Бочаров Владимир Алексеевич
  • Игнаткина Владислава Анатольевна
  • Хачатрян Лилия Степановна
  • Шаветов Владимир Алексеевич
  • Шаветова Татьяна Федоровна
  • Пунцукова Байгал Тубденовна
RU2379116C1

Иллюстрации к изобретению RU 2 588 090 C1

Реферат патента 2016 года СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ РУД

Изобретение относится к обогащению полезных ископаемых и может быть использовано при флотации полиметаллических руд, медно-цинковых и других биметаллических руд. Способ флотационного обогащения сульфидных руд включает измельчение руды, осуществляемое в щелочной среде, создаваемой известью, кондиционирование пульпы с сернистым натрием и сульфатом цинка, введение собирателя и вспенивателя, флотацию сульфидов меди в пенный продукт. Измельченный продукт поступает в операцию контактирования с реагентами и далее в I межцикловую флотацию, камерный продукт которой после доизмельчения и контактирования с реагентами поступает во II межцикловую флотацию. Пенные продукты межцикловых операций после агитации с реагентами поступают в межцикловую перечистную операцию, пенный продукт которой представляет собой медный концентрат. Камерный продукт II межцикловой флотации после контактирования с реагентами поступает в I основную медно-свинцовую флотацию и после доизмельчения во II основную медно-свинцовую флотацию, пенные продукты которых, объединившись с пенным продуктом и камерным продуктом межцикловой перечистной операции, поступают после контактирования в цикл перечистных операций, концентрат которых представляет собой медно-свинцовый продукт - питание цикла одноименной селекции, а камерный продукт контрольной коллективной медно-свинцовой флотации является питанием цинк-пиритного цикла. Технический результат - повышение эффективности и интенсификации процесса флотации медно-свинцово-цинковых руд. 7 з.п. ф-лы, 1 ил., 1 табл., 8 пр.

Формула изобретения RU 2 588 090 C1

1. Способ флотационного обогащения сульфидных руд, включающий измельчение руды, осуществляемое в щелочной среде, создаваемой известью, кондиционирование пульпы с сернистым натрием и сульфатом цинка, введение собирателя и вспенивателя, флотацию сульфидов меди в пенный продукт, отличающийся тем, что измельченный продукт поступает в операцию контактирования с реагентами и далее в I межцикловую флотацию, камерный продукт которой после доизмельчения и контактирования с реагентами поступает во II межцикловую флотацию, причем пенные продукты межцикловых операций после агитации с реагентами поступают в межцикловую перечистную операцию, пенный продукт которой представляет собой медный концентрат, камерный продукт II межцикловой флотации после контактирования с реагентами поступает в I основную медно-свинцовую флотацию и после доизмельчения - во II основную медно-свинцовую флотацию, пенные продукты которых, объединившись с пенным продуктом и камерным продуктом межцикловой перечистной операции, поступают после контактирования в цикл перечистных операций, концентрат которых представляет собой медно-свинцовый продукт - питание цикла одноименной селекции, а камерный продукт контрольной коллективной медно-свинцовой флотации является питанием цинк-пиритного цикла.

2. Способ флотационного обогащения сульфидных руд по п. 1, отличающийся тем, что в качестве депрессора используется смесь сернистого натрия, сульфита натрия и цинкового купороса в соотношении: суммарная массовая доля сернистого натрия и сульфита натрия к массовой доле цинкового купороса 1:2, при этом диапазон отклонения не более 10 отн.%.

3. Способ флотационного обогащения сульфидных руд по п. 1, отличающийся тем, что в качестве собирателя в межцикловой флотации используется тионокарбамат.

4. Способ флотационного обогащения сульфидных руд по п. 1, отличающийся тем, что в качестве собирателя в основных и контрольной медно-свинцовой флотациях используется смесь дитиофосфината и ксантогената, в соотношении 1:1.

5. Способ флотационного обогащения сульфидных руд по п. 1, отличающийся тем, что пенные продукты межцикловых операций флотации поступают в операцию механоактивации перед межцикловой перечистной операцией.

6. Способ флотационного обогащения сульфидных руд по п. 1, отличающийся тем, что камерный продукт межцикловой перечистной флотации поступает в операцию механоактивации перед первой перечистной операцией коллективного медно-свинцового концентрата.

7. Способ флотационного обогащения сульфидных руд по п. 1, отличающийся тем, что в качестве депрессора в агитации перед межцикловой флотацией используется карбоксиметилцелллоза.

8. Способ флотационного обогащения сульфидных руд по п. 1, отличающийся тем, что перечистной цикл медно-свинцовых перечисток осуществляется в следующем диапазоне pH: первая перечистка 8÷12, вторая перечистка 7÷9, третья перечистка 7÷8.

Документы, цитированные в отчете о поиске Патент 2016 года RU2588090C1

СПОСОБ ФЛОТАЦИОННОГО РАЗДЕЛЕНИЯ СУЛЬФИДНЫХ МЕДНО-ЦИНКОВО-ПИРИТНЫХ КОНЦЕНТРАТОВ, СОДЕРЖАЩИХ АКТИВИРОВАННЫЕ КАТИОНАМИ МЕДИ И КАЛЬЦИЯ СУЛЬФИДЫ ЦИНКА 1993
  • Бочаров В.А.
  • Агафонова Г.С.
  • Херсонская И.И.
  • Лапшина Г.А.
  • Херсонский М.И.
  • Касьянова Е.Ф.
  • Серебрянников Б.Л.
  • Иванов Н.Ф.
  • Морозов Б.А.
  • Карбовская А.В.
RU2054971C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ РУД 2009
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
  • Нагаева Светлана Петровна
  • Арустамян Карен Михайлович
  • Соловьева Лариса Михайловна
RU2403981C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ РУД 2009
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
  • Назаров Юрий Павлович
  • Турсунова Нина Борисовна
RU2398635C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД 2009
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
RU2397817C1
СПОСОБ ФЛОТАЦИОННОГО ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД 2009
  • Зимин Алексей Владимирович
  • Арустамян Михаил Армаисович
  • Соловьева Лариса Михайловна
  • Арустамян Армен Михайлович
  • Шумская Елена Николаевна
  • Турсунова Нина Борисовна
RU2404858C1
СПОСОБ СЕЛЕКТИВНОЙ ФЛОТАЦИИ СУЛЬФИДНЫХ МЕДНО-ЦИНКОВЫХ РУД 1992
  • Кирбитова Н.В.
  • Панова Н.И.
  • Елисеев Н.И.
  • Борисков Ф.Ф.
RU2038860C1
US 5795465 A1, 18.08.1998..

RU 2 588 090 C1

Авторы

Зимин Алексей Владимирович

Арустамян Михаил Армаисович

Даты

2016-06-27Публикация

2015-05-05Подача