СПОСОБ ОБНАРУЖЕНИЯ И КОНТРОЛЯ ДЕФЕКТОВ ИЗДЕЛИЙ ИЗ МЕТАЛЛА Российский патент 2016 года по МПК G01N29/04 

Описание патента на изобретение RU2589486C2

Изобретение относится к измерительной технике, а именно к контролю состояния изделий из металла и может быть использовано в различных отраслях машиностроения и приборостроения, в частности, и российскими железными дорогами (ОАО «РЖД») при исследовании боковых рам (БР) тележек грузовых вагонов.

Наиболее распространенным способом выявления трещин БР является визуальный осмотр.

Недостатками этого способа является пропуск наличия трещин из-за:

- образования трещин в невидимых для осмотра зонах;

- особенностей адаптации зрения человека при переводе взгляда со света в тень и обратно, составляющей несколько минут. Неоднократная темновая и световая переадаптация глаз существенно снижает остроту зрения осмотрщиков;

- отсутствие в арсенале осмотрщиков технических средств дистанционного объективного контроля целостности БР.

Широко используемые в ОАО «РЖД» ультразвуковой, феррозондовый, акусто-эмиссионный методы дефектоскопии БР трудоемки и дороги, требуют тщательной очистки поверхности обследуемой рамы от разнообразных загрязнений (лед, грязь, нефтепродукты…) для обеспечения качественного контакта с датчиками и аппаратурой и наиболее пригодны (с учетом требований к квалификации пользователя) для применения в стационарных условиях. Проходящий испытания акустический "интеллектуальный молоток" разработки компании "Чистые технологии" (г.Санкт-Петербург) имеет тот же недостаток.

В качестве прототипа выбраны способ и устройство идентификации объектов, активного радиоволнового обнаружения и неразрушающего контроля естественных, производственных и эксплуатационных дефектов и включений систем и объектов природного и техногенного характера, описанное в заявке RU 2006103112, где в контролируемом изделии возбуждают электромагнитное поле внешним электромагнитным излучением, принимают излучаемые электромагнитные сигналы, измеряют их параметры и по результатам измерений определяют наличие дефектов.

Однако в данном техническом решении принимаемые электромагнитные сигналы создаются за счет возникновения в контролируемом изделии макротоков и характерных для емкостных элементов токов смещения, для чего облучение контролируемого изделия производят с помощью металлических пластин и оболочек через диэлектрические пластины и оболочки, исполняющие роль своеобразной системы конденсаторов, между которыми устанавливают контролируемое изделие, причем данные пластины определенным образом выкладываются по контуру исследуемого изделия, в результате чего поле, излучаемое изделием, а следовательно, и спектральные характеристики становятся объектно-ориентированными, то есть само изделие становится антенной и начинает излучать электромагнитные волны, по спектру которых и производится идентификация объекта исследования, что является сложным, не достаточно точным и ограничено в применении.

Задачей, на решение которой направлено изобретение, является повышение безопасности эксплуатации металлических изделий, у которых возникают различные дефекты при эксплуатации, в частности трещины.

Поставленная задача достигается с помощью получаемого от использования изобретения технического результата, заключающегося в увеличение точности и надежности контроля целостности металлических объектов за счет создания метода дистанционного неразрушающего контроля трещин, возникающих и в невидимых для осмотра зонах, и создание устройства, реализующего данный метод.

Поставленная задача достигается тем, что поверхность металлического изделия сканируют зондирующим сигналом, формирующим передающим устройством, а преобразованный нелинейностями этого металлического изделия сигнал принимают с помощью приемного устройства. При этом зондирующий сигнал формируют в виде 1-й гармоники сигнала, а в качестве преобразованного контактными неоднородностями металлического изделия принимают 3-ю гармонику этого сигнала, возникающую в дефекте.

Для увеличения отношения сигнал/шум вместе с зондирующим сигналом на изделие из металла осуществляют одновременное механическое воздействие (удар, вибрация, и т.д.) или в качестве воздействующего сигнала на изделие из металла используют амплитудно-модулированную 1-ю гармонику зондирующего сигнала.

Этот способ может быть осуществлен с помощью устройств, изображенных на фиг. 1, 2, 3, где:

1 - Задающий генератор

2 - Удвоитель частоты

3 - Усилитель зондирующего сигнала

4 - Фильтр гармоник

5 - Антенна зондирующего сигнала

6 - Антенна приемника

7 - Входной фильтр

8 - Усилитель входного сигнала

9 - Синхронно-фазовый детектор

10 - Утроитель частоты

11 - Регулируемый фазовращатель напряжения гетеродина

12 - Фильтр и усилитель выходного сигнала СФД

13 - Устройство обработки

14 - Индикатор приемника

15 - Низкочастотный генератор

16 - Усилитель мощности низкой частоты

17 - Источник механического воздействия

18 - Амплитудный модулятор

19 - Модулирующий генератор.

На фиг. 1 изображено устройство, в котором объединены: передающее устройство - генератор 1-й гармоники зондирующего сигнала (ЗС), и принимающее - устройство приема 3-й гармоники ЗС. В устройстве генератор ЗС построен по классической схеме и содержит последовательно соединенные задающий генератор 1, удвоитель частоты 2, усилитель зондирующего сигнала 3, фильтр гармоник 4 и антенну зондирующего сигнала 5. Принимающее - устройство приема 3-й гармоники ЗС, состоит из антенны приемника 6, выход которой через входной фильтр 7 и усилитель входного сигнала 8 соединен с одним из входов синхронно-фазового детектора (СФД) 9, который должен иметь внутри два нелинейных элемента, включенных встречно-параллельно. На другой вход СФД 9 подается напряжение от задающего генератора 1 через утроитель частоты 10 и регулируемого фазовращателя 11, а выход СФД 9 подключен через фильтр и усилитель 12 выходного сигнала СФД к устройству обработки 13 и индикатору 14.

На фиг. 2 изображено передающее и принимающее устройство, изображенное на фиг. 1, в котором к устройству обработки 13 (фиг. 1) подключен выход низкочастотного генератора 15, выход которого также подключен к усилителю мощности низкой частоты 16, выход которого подключен к источнику механического воздействия 17.

На фиг. 3 изображено передающее и принимающее устройство, изображенное на фиг. 1, где между удвоителем частоты 2 и усилителем зондирующего сигнала 3 включен амплитудный модулятор 18, второй вход которого подключен к выходу модулирующего генератора 19, и выход модулирующего генератора 19 подключен к блоку обработки 13.

Устройство обнаружения и контроля дефектов изделий из металла работает следующим образом.

Напряжение с задающего генератора 1 подается на удвоитель частоты 2 и получается частота 1-й гармоники зондирующего сигнала (ЗС), которая усиливается усилителем 3, фильтруется фильтром гармоник 4, излучается на объект диагностики с помощью антенны передатчика 5. Излучаемый сигнал пропускают через фильтр гармоник 4 для уменьшения 3-й гармоники передающего устройства. При облучении изделий из металла, имеющего дефект в виде трещины, генерируется 3-я гармоника ЗС, которая поступает в антенну приемника 6, и через фильтр 7, подавляющий 1-ю гармонику ЗС для исключения перегрузки входных каскадов приемника, при которой может генерироваться 3-я гармоника ЗС в этих приемных каскадах, и через усилитель 8 поступает на второй вход СФД 9, на первый вход которого подается напряжение гетеродина СФД, образованного (обведено на фиг. 1, 2, 3 пунктирной линией) последовательно соединенными задающим генератором 1, утроителем частоты этого генератора 10 и регулируемым фазовращателем 11. Частота напряжения, поступающего на первый вход СФД 9 с гетеродина в два раза меньше частоты входного напряжения (3-й гармоники ЗС), поступающего на другой вход СФД 9.

На выходе СФД 9 возникает сигнал, пропорциональный амплитуде принимаемой 3-й гармоники ЗС, возникшей в дефекте изделия из металла. Это возможно только при синхронно-фазовой обработке входного и гетеродинного напряжений. Сигнал на выходе СФД 9, являющийся импульсным, поступает через фильтр и усилитель 12 на устройство обработки этого сигнала 13 и индикатор 14. Необходимость пропускания выходного сигнала СФД 9 через фильтр 12 связано с необходимостью уменьшения влияния на этот сигнал сетевых и индустриальных помех и паразитных модуляционных эффектов деталей изделия.

Для увеличения отношения сигнал/шум принимаемого сигнала одновременно с ЗС на объект диагностики осуществляют воздействие звуковым источником с помощью введенными в устройство на фиг. 1 низкочастотного генератора 15, усилителя мощности низкой частоты 16, источника механического воздействия 17 (см. фиг. 2), и с выхода низкочастотного генератора 15 напряжение подается на устройство обработки 13 для синхронизации и корреляции дополнительного механического воздействия на изделие из металла.

Для повышения вероятности обнаружения местоположение дефекта в изделии из металла предлагается усовершенствование устройства на фиг. 1 с помощью введения блоков амплитудной модуляции ЗС, изображенных на фиг. 3, включающих модулятор 18 и модулирующий генератор 19. С помощью этих блоков производится амплитудная модуляция ЗС, за счет чего повышается коэффициент нелинейного преобразование ЗС на нелинейностях трещины металлического изделия, что увеличивает отношение сигнал/шум принимаемого сигнала 3-й гармоники и повышает вероятность правильного обнаружения.

Задающий генератор 1 является общим для генератора зондирующего сигнала и для сигнала гетеродина СФД с требуемым соотношением частот 2 к 1 для нормальной работы СФД 9. Это обеспечивает синфазную обработку принимаемого сигнала 3-й гармоники зондирующего сигнала и сигнала гетеродина СФД (с частотой в два раза меньше частоты принимаемой 3-й гармоники зондирующего сигнала от дефектного объекта).

Применение СФД 9 в системах, где приемное и передающее устройства расположены рядом друг с другом, существенно упрощает синхронный приемник, так как частота гетеродина в нем формируется как умноженное в нужное количество раз частоты задающего генератора передатчика. Синхронный приемник, как известно, обладает повышенной помехоустойчивостью и его можно рассматривать как супергетеродинный с нулевой промежуточной частотой.

Для подтверждения работоспособности способа и реализующего этот способ устройства был создан макет устройства. Основные характеристики макета:

- частота зондирующего сигнала (ЗС) - 300 МГц,

- выходная мощность ЗС - 5 Вт,

- принимаемая гармоника - третья,

- чувствительность приемника - -120 дБ/Вт,

- поляризация антенн - линейная.

Упрощенная схема макета с указанием рабочих частот изображена на фиг. 4, где частота входного напряжения СФД 9 от гетеродина СФД F3=150 МГц×3=450 МГц, а частота принимаемого сигнала 3-й гармоники ЗС F4=150 МГц×2×3=900 МГц.

В качестве объектов исследования были использованы части дефектных боковых рам грузовых вагонов с наружной трещиной и литьевой трещиной.

Передающая антенна 5 и антенна приемного устройства 6 были выполнены из совмещенных квадратных вибраторов с соответствующими рефлекторами. Поляризация антенн - изменяемая линейная.

При облучении боковых рам сигналом с антенны генератора 6 (при изменяемой линейной поляризации) производился периодический удар деревянной или резиновой кувалдой по раме. На индикаторе приемника 14 после устройства обработки 13 (в котором использовалась цифровая обработка при синхронизации и корреляционной обработке), вместе со световым и звуковым сигналами был получен график (см. фиг. 5) огибающей принятой 3-й гармоники ЗС, возникшей в дефекте при ударах деревянным молотком по дефектной боковой раме грузового железнодорожного вагона.

Аналогом метода использования периодических ударов деревянной или резиновой кувалдой по раме может быть использование эффектов вибрации от неровностей колеса, железнодорожного полотна и рельсовых стыков, которая возникает при движении вагона.

Авторами было изучено влияние амплитудной модуляции ЗС на эффективность предлагаемого метода диагностики дефектных изделий из металла. В результате чего было установлено, что применение амплитудной модуляции ЗС позволяет проводить диагностику дистанционно, при движении железнодорожного вагона, так как не требует механического контакта с объектом диагностики. Дистанционная диагностика вагонов может быть проведена с помощью стационарного пункта диагностики, расположенного рядом с путями, с моментальной передачей полученных данных диспетчеру или машинисту.

Похожие патенты RU2589486C2

название год авторы номер документа
СИСТЕМА КОНТРОЛЯ ПЕРЕГРЕВА С ДИСТАНЦИОННЫМ СЧИТЫВАНИЕМ ИНФОРМАЦИИ 2009
  • Касьянов Дмитрий Альбертович
  • Тараканков Станислав Петрович
  • Жестянников Лев Лазаревич
RU2408855C1
Способ и устройство обнаружения радиоуправляемых взрывных устройств с применением беспилотного летательного аппарата 2018
  • Анисимов Игорь Владиленович
  • Мазаев Артем Николаевич
  • Парфенцев Игорь Валерьевич
  • Ткач Владимир Николаевич
  • Ткач Никита Владимирович
RU2745658C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ "НЕЛИНЕЙНЫХ" РАДИОЛОКАЦИОННЫХ ХАРАКТЕРИСТИК 2003
  • Беляев В.В.
  • Богданов Ю.Н.
  • Маюнов А.Т.
RU2265230C2
ПРОТИВОУГОННОЕ УСТРОЙСТВО ДЛЯ ТРАНСПОРТНОГО СРЕДСТВА 2010
  • Дикарев Виктор Иванович
  • Шубарев Валерий Антонович
  • Мельников Владимир Александрович
  • Петрушин Владимир Николаевич
  • Калинин Владимир Анатольевич
RU2412835C1
НЕЛИНЕЙНЫЙ РАДАР ДЛЯ ОБНАРУЖЕНИЯ ИСПОЛНИТЕЛЬНЫХ РАДИОЭЛЕКТРОННЫХ УСТРОЙСТВ УПРАВЛЕНИЯ ВЗРЫВОМ 2003
  • Баглаев С.Б.
  • Володин В.В.
  • Кандырин Николай Павлович
  • Козачок Н.И.
  • Полевова Н.Н.
  • Чаплыгин А.А.
  • Юрьев Р.В.
  • Юрьев В.В.
RU2251708C1
УСТРОЙСТВО ДЛЯ НЕПРЕРЫВНОГО СЛЕЖЕНИЯ ЗА ДЕЯТЕЛЬНОСТЬЮ СЕРДЦА 2002
  • Заренков В.А.
  • Заренков Д.В.
  • Дикарев В.И.
  • Койнаш Б.В.
RU2232545C2
СПОСОБ И УСТРОЙСТВО ИЗМЕРЕНИЯ ДАЛЬНОСТИ В ДВУХЧАСТОТНОМ НЕЛИНЕЙНОМ РАДИОЛОКАТОРЕ 2016
  • Дмитриев Вадим Владимирович
  • Замятина Ирина Николаевна
RU2621319C1
ПРОТИВОУГОННОЕ УСТРОЙСТВО ДЛЯ ТРАНСПОРТНОГО СРЕДСТВА 2007
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
  • Рыбкин Леонид Всеволодович
  • Гянджаева Севда Исмаил Кызы
RU2360809C1
СПОСОБ НЕЛИНЕЙНОЙ РАДИОЛОКАЦИИ 2009
  • Хакимов Наиль Тимерханович
  • Усов Николай Александрович
RU2436115C2
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2007
  • Дикарев Виктор Иванович
  • Журкович Виталий Владимирович
  • Сергеева Валентина Георгиевна
RU2330295C1

Иллюстрации к изобретению RU 2 589 486 C2

Реферат патента 2016 года СПОСОБ ОБНАРУЖЕНИЯ И КОНТРОЛЯ ДЕФЕКТОВ ИЗДЕЛИЙ ИЗ МЕТАЛЛА

Использование: для обнаружения и контроля дефектов изделий из металла. Сущность изобретения заключается в том, что металлическое изделие сканируют зондирующим сигналом, формирующимся передающим устройством, а возникающий в дефектном металлическом изделии сигнал принимают с помощью приемного устройства, при этом зондирующий сигнал формируют в виде 1-й гармоники сигнала, а в качестве отраженного от металлического изделия принимают 3-ю гармонику этого сигнала, возникающую в дефекте. Технический результат: повышение достоверности обнаружения дефектов. 2 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 589 486 C2

1. Способ обнаружения и контроля дефектов изделий из металла, в котором металлическое изделие сканируют зондирующим сигналом, формирующимся передающим устройством, а возникающий в дефектном металлическом изделии сигнал принимают с помощью приемного устройства, отличающийся тем, что зондирующий сигнал формируют в виде 1-й гармоники сигнала, а в качестве отраженного от металлического изделия принимают 3-ю гармонику этого сигнала, возникающую в дефекте.

2. Способ по п. 1, отличающийся тем, что вместе с зондирующим сигналом на изделие из металла осуществляют одновременное механическое воздействие (удар, вибрация, и т.д.).

3. Способ по п. 1, отличающийся тем, что в качестве воздействующего сигнала на изделие из металла используют амплитудно-модулированную 1-ю гармонику зондирующего сигнала.

Документы, цитированные в отчете о поиске Патент 2016 года RU2589486C2

СПОСОБ КОНТРОЛЯ ДЕФЕКТНОСТИ ИЗДЕЛИЯ 2002
  • Игнатьев В.К.
  • Неклюдов А.М.
  • Никитин А.В.
RU2245543C2
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ СРЕДНЕГО РАЗМЕРА ЗЕРНА МАТЕРИАЛА ДВИЖУЩЕГОСЯ ЛИСТОВОГО ПРОКАТА 2000
  • Добротин Д.Д.
  • Паврос А.С.
  • Паврос С.К.
RU2187102C2
НЕЛИНЕЙНЫЙ УЛЬТРАЗВУКОВОЙ СПОСОБ ОБНАРУЖЕНИЯ ТРЕЩИН И ИХ МЕСТОПОЛОЖЕНИЙ В ТВЕРДОМ ТЕЛЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2005
  • Казаков Вячеслав Вячеславович
RU2280863C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ И ДИАГНОСТИКИ ДЕФЕКТОВ В МОРСКИХ ЛЕДОСТОЙКИХ ПЛАТФОРМАХ 2011
  • Балакин Рудольф Александрович
  • Тимец Валерий Михайлович
RU2485492C1
US 7834747B1, 16.11.2010
JP 2004340807A, 02.12.2004.

RU 2 589 486 C2

Авторы

Тараканков Станислав Петрович

Есипенко Валентин Иванович

Дворянинов Николай Александрович

Пономарев Андрей Николаевич

Славинский Дмитрий Михайлович

Лесун Анатолий Федорович

Даты

2016-07-10Публикация

2014-08-28Подача