СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО КОМПОЗИТА С НУЛЕВЫМ КОЭФФИЦИЕНТОМ ТЕРМИЧЕСКОГО ЛИНЕЙНОГО РАСШИРЕНИЯ Российский патент 2016 года по МПК C04B35/488 C04B35/119 B82Y40/00 

Описание патента на изобретение RU2592923C1

Изобретение относится к получению керамических композитов с нулевым коэффициентом термического линейного расширения, предназначенных для изготовления, в частности, запорных элементов нефтегазового комплекса.

Известна работа Lommens, P.P. Synthesis and thermal expansion of ZrO2/ZrW2O8 composites / P.P. Lommens et. al. // Journal of the European Ceramic Society. - 2005. - V. 25(16). - P. 3605-3610 [1]

В этой работе, керамический композит из ZrW2O8 и ZrO2 был синтезирован для того, чтобы исследовать возможность компенсации положительного теплового расширения ZrO2 с отрицательным тепловым расширением (NTE) соединения ZrW2O8. Материал NTE смешивали с различными количествами ZrO2. Коэффициенты теплового расширения этой серии композитов уменьшается с увеличением количества ZrW2O8. Тем не менее, отрицательное отклонение от ожидаемых значений по правилу смесей было установлено, что наиболее выражено в середине значений по правилу смесей.

Недостатком известного технического решения является невысокие прочностные характеристики керамического материала, полученного данным способом.

Известна работа Yang, X. Synthesis of ZrO2/ZrW2O8 composites with low thermal expansion / X. Yang et. al. // Com. Sci. Tech. - 2007. - V. 67. - P. 1167-1171 [2].

В этой работе, ZrO2/ZrW2O8 композиты с очень низким коэффициентом теплового расширения были успешно синтезированы. Отрицательное тепловое расширение материала ZrW2O8, который синтезировали по способу сгорания, смешивают с ZrO2 при различных соотношениях и спекают при 1473 К в течение 24 ч. Тепловое расширение композитов можно регулировать, оно может быть положительным, отрицательным или даже равен нулю. Композиционный материал имеет почти нулевой тепловое расширение, когда объемная доля ZrW2O8 37%. Небольшое количество добавки Al2O3 может быстро увеличить плотность композитов с небольшим воздействием на свойство теплового расширения по формированию твердого раствора и жидкой фазы.

Недостатком известного технического решения является то, что длительное спекание материала по данному способу приводит к увеличению размера зерна, что уменьшает прочностные характеристики композита.

Задачей предлагаемого изобретения является разработка керамического композита с нулевым коэффициентом термического линейного расширения (КТЛР).

Техническим результатом изобретения является получение керамического композита с нулевым коэффициентом термического линейного расширения (КТЛР) и высокими физико-механическими свойствами.

Указанный технический результат достигается тем, что способ получения керамического композита с нулевым коэффициентом термического линейного расширения включает приготовление порошковой смеси из оксида циркония и/или оксида алюминия, формование заготовки и спекание, при этом порошковая смесь дополнительно содержит наноструктурный вольфрамат циркония при следующем соотношении компонентов, мас. %:

вольфрамат циркония 5-15 оксид циркония и/или оксид алюминия остальное

спекание проводят при температуре 1350-1550°C, затем дополнительно осуществляют закалку при температуре 1175-1200°C, с последующим охлаждением со скоростью 200-250°C/сек.

Для приготовления порошковой смеси используют диоксид циркония, стабилизированный, например, 3-5 мас. % Y2O3, с содержанием моноклинной фазы ZrO2 не более 10%. В предлагаемом способе используют наноструктурный вольфрамат циркония, полученный гидротермальным методом. Формование заготовки проводят холодным или горячим прессованием.

Сущность предлагаемого изобретения заключается в следующем.

Керамические материалы имеют достаточно невысокие значения коэффициента теплового расширения по сравнению с металлами и полимерами, и в условиях работы в области высоких температур, а также резких перепадах температур происходит изменение линейных размеров или растрескивание изделия, элемента конструкции. Кроме этого, в процессе циклических термических нагружениях в структуре материала могут формироваться нежелательные внутренние напряжения, вызванные различными значениями коэффициентов теплового расширения. Одним из способов решением обозначенной проблемы является создание керамического композита с нулевым коэффициентом термического линейного расширения.

Отличительной чертой оксидной керамики является термические свойства, отвечающие за поведение материала при высокотемпературных воздействиях. Для керамических материалов важными термическими свойствами являются огнеупорность, термостойкость, низкий коэффициент термического расширения.

На значение коэффициента термического расширения диоксида циркония влияет количество стабилизирующей добавки, с повышением степени стабилизации и плотности материала КТЛР увеличивается.

Для предлагаемого способа предпочтительно использование диоксида циркония, стабилизированного, например, 3-5 мас. % Y2O3, с содержанием моноклинной фазы ZrO2 не более 10%.

Введение в состав оксидного композита исходных компонентов с низким или отрицательным коэффициентом термического расширения позволит не только контролировать, но и задавать необходимое значение коэффициента термического расширения конечного материала. Данный технологический прием позволит получать керамические композиционные материалы с размерной инвариантностью (нулевым КТЛР), которая достигается за счет компенсации расширения исходного компонента с положительным КТЛР тепловым сжатием исходного компонента с низким или отрицательным КТЛР

Использование в качестве компенсатора термического расширения оксидной керамики компонента с более низким значением коэффициента термического расширения позволит получать керамические композиты с нулевым КТЛР.

Техническое решение возможно с использованием наноструктурного вольфрамата циркония. Комбинация оксидов, в частности, оксида циркония или оксида алюминия или их гомогенной смеси с положительным коэффициентом теплового расширения с наноструктурным вольфраматом циркония, обладающего отрицательным КТЛР, приведет к формированию общего нулевого КТЛР получаемого керамического композита.

Предлагаемый способ получения керамического композита из оксидов с добавлением вольфрамата циркония заключается в смешивании исходных компонентов в заявляемом соотношении с последующим прессованием, затем спеканием с закалкой и охлаждением до комнатной температуры.

Использование наноструктурного вольфрамата циркония (ZrW2O8), полученного гидротермальным методом, наиболее эффективно по сравнению с крупнокристаллическим, полученным другими методами. Керамический композит из оксидов, полученный с добавление наноструктурного вольфрамата циркония, имеет достаточно однородную структуру и маленький размер зерна. Кроме этого, для получения нулевого значения коэффициента теплового расширения необходимо меньшее количество вольфрамата циркония, полученного гидротермальным методом (5-15 мас. %) по сравнению полученного золь-гель методом (примерно 26 мас. %), или полученного твердофазной реакцией (примерно 35 мас. %).

Получение керамического композита из оксидов включает приготовление смеси порошков из исходных компонентов, в частности, оксида циркония или оксида алюминия или их гомогенной смеси до получения однородной массы с последующим формованием образца и его спекание при температуре 1350-1550°C, дополнительной закалкой при температуре 1175-1200°C, охлаждение со скоростью 200-250°C/сек.

Указанные технологические параметры температурного режима способа: спекания, дополнительной закалки и охлаждения были подобраны экспериментальным путем.

Пример конкретного выполнения

В качестве исходных компонентов используют порошок наноструктурного вольфрамата циркония, полученный гидротермальным способом и порошки:

- оксида циркония, полученный методом химического осаждения производства КСМ Corporation, Тайвань;

- оксида алюминия марки ГОО, полученный отжигом гидроксида алюминия.

Берут 10 г порошка наноструктурного вольфрамата циркония и 90 г порошка диоксида циркония, стабилизированного, например, 3-5 мас. % Y2O3, с содержанием моноклинной фазы ZrO2 не более 10% и готовят из них порошковую смесь смешиванием в смесителе типа «пьяная бочка».

Затем формуют из полученной порошковой смеси в стальной пресс-форме прессовку при давлении 50 МПа. Спекание отформованной прессовки проводят в печи с воздушной атмосферой при температуре 1500°C, закалку при температуре 1175°C, с последующим его охлаждением со скоростью 200°C/сек.

Проводят измерение физико-механических свойств полученного керамического композита.

В таблице 1 приведены предлагаемые компонентные составы порошковой смеси и технологические температурные режимы получения керамического композита с нулевым коэффициентом термического линейного расширения согласно заявляемому способу.

Аналогично примеру 1, согласно пп. 2-9 таблицы 1, из предлагаемых компонентных составов порошковой смеси готовят порошковые смеси смешиванием в смесителе типа «пьяная бочка». Затем формуют из полученных порошковых смесей в стальной пресс-форме прессовки при давлении 50 МПа. Далее проводят спекание отформованных прессовок по технологическим температурным режимам согласно пп. 2-9 таблицы 1 и получают заявляемый керамический композит.

Соответствующие измерения физико-механических характеристик керамического композита с нулевым коэффициентом термического линейного расширения представлены в таблице 2.

Похожие патенты RU2592923C1

название год авторы номер документа
Металлокерамический композит и способ его получения (варианты) 2016
  • Дедова Елена Сергеевна
  • Левков Руслан Викторович
  • Буякова Светлана Петровна
  • Кульков Сергей Николаевич
  • Турунтаев Игорь Владимирович
RU2640055C1
Способ получения порошка вольфрамата циркония 2016
  • Дедова Елена Сергеевна
  • Губанов Александр Иридиевич
  • Буякова Светлана Петровна
  • Кульков Сергей Николаевич
  • Петрушина Мария Юрьевна
RU2639244C1
КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2018
  • Подзорова Людмила Ивановна
  • Ильичёва Алла Александровна
  • Кутузова Валерия Евгеньевна
  • Пенькова Ольга Ивановна
  • Сиротинкин Владимир Петрович
RU2710648C1
Способ получения керамических композитов на основе ортофосфата лантана 2022
  • Мезенцева Лариса Петровна
  • Осипов Александр Владимирович
  • Масленникова Татьяна Петровна
  • Кручинина Ирина Юрьевна
  • Любимцев Александр Сергеевич
  • Акатов Андрей Андреевич
RU2791913C1
МИШЕНЬ, ПРЕДНАЗНАЧЕННАЯ ДЛЯ ИСПАРЕНИЯ ПОД ДЕЙСТВИЕМ ЭЛЕКТРОННОГО ЛУЧА, СПОСОБ ЕЕ ПОЛУЧЕНИЯ, ПОЛУЧЕННЫЕ ИЗ МИШЕНИ ТЕПЛОВОЙ БАРЬЕР И ПОКРЫТИЕ, И МЕХАНИЧЕСКАЯ ДЕТАЛЬ, ИМЕЮЩАЯ ТАКОЕ ПОКРЫТИЕ 2004
  • Сэн-Рамон Бертран
  • Мали Андре
  • Шапю Кристоф
  • Порт Изабель
  • Делаж Сириль
RU2370471C2
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО ГРАДИЕНТНОГО МАТЕРИАЛА 2010
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
  • Калатур Екатерина Сергеевна
  • Канаки Алексей Владимирович
  • Промахов Владимир Васильевич
RU2454297C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРНОГО ПОРОШКА ВОЛЬФРАМАТА ЦИРКОНИЯ 2015
  • Кульков Сергей Николаевич
  • Буякова Светлана Петровна
  • Дедова Елена Сергеевна
RU2598728C1
СПОСОБ ПОЛУЧЕНИЯ ПЛОТНОЙ НАНОКЕРАМИКИ НА ОСНОВЕ ОКСИДА АЛЮМИНИЯ В СИСТЕМЕ AlO-ZrO(YO) 2018
  • Морозова Людмила Викторовна
RU2685604C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТЫХ МЕМБРАН НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ ДЛЯ ФИЛЬТРАЦИИ ЖИДКОСТЕЙ И ГАЗОВ 2017
  • Морозова Людмила Викторовна
  • Калинина Марина Владимировна
  • Шилова Ольга Алексеевна
RU2640546C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОЙ КОМПОЗИЦИОННОЙ КЕРАМИКИ НА ОСНОВЕ ОКСИДОВ ЦИРКОНИЯ, АЛЮМИНИЯ И КРЕМНИЯ 2018
  • Дмитриевский Александр Александрович
  • Жигачева Дарья Геннадиевна
  • Жигачев Андрей Олегович
  • Тюрин Александр Иванович
  • Васюков Владимир Михайлович
RU2701765C1

Иллюстрации к изобретению RU 2 592 923 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО КОМПОЗИТА С НУЛЕВЫМ КОЭФФИЦИЕНТОМ ТЕРМИЧЕСКОГО ЛИНЕЙНОГО РАСШИРЕНИЯ

Изобретение относится к получению керамических композитов с нулевым коэффициентом термического линейного расширения, предназначенных для изготовления, в частности, запорных элементов нефтегазового комплекса. Техническим результатом изобретения является получение керамического композита с нулевым коэффициентом термического линейного расширения (КТЛР) и высокими физико-механическими свойствами. Способ получения керамического композита включает приготовление порошковой смеси из оксида циркония и/или оксида алюминия, c наноструктурным вольфраматом циркония при следующем соотношении компонентов, мас.%: вольфрамат циркония 5-15, оксид циркония и/или оксид алюминия - остальное, формование заготовки и спекание. Спекание проводят при температуре 1350-1550°C, затем дополнительно осуществляют закалку при температуре 1175-1200°C, с последующим охлаждением со скоростью 200-250°C/сек. Для приготовления порошковой смеси используют диоксид циркония, стабилизированный 3-5 мас. % Y2O3, с содержанием моноклинной фазы ZrO2 не более 10%. Формование заготовки проводят холодным или горячим прессованием. 3 з.п. ф-лы, 1 пр., 2 табл.

Формула изобретения RU 2 592 923 C1

1. Способ получения керамического композита с нулевым коэффициентом термического линейного расширения, включающий приготовление порошковой смеси из оксида циркония и/или оксида алюминия, формование заготовки и спекание, отличающийся тем, что порошковая смесь дополнительно содержит наноструктурный вольфрамат циркония при следующем соотношении компонентов, мас.%:
вольфрамат циркония 5-15 оксид циркония и/или оксид алюминия остальное,


спекание проводят при температуре 1350-1550°С, затем дополнительно осуществляют закалку при температуре 1175-1200°С, с последующим охлаждением со скоростью 200-250°С/сек.

2. Способ по п. 1, отличающийся тем, что для приготовления порошковой смеси используют диоксид циркония, стабилизированный, например, 3-5 мас.% Y2O3, с содержанием моноклинной фазы ZrO2 не более 10%.

3. Способ по п. 1, отличающийся тем, что используют наноструктурный вольфрамат циркония, полученный гидротермальным методом.

4. Способ по п. 1, отличающийся тем, что формование заготовки проводят холодным или горячим прессованием.

Документы, цитированные в отчете о поиске Патент 2016 года RU2592923C1

YANG X
et al "Synthesis of ZrO/ZrWO composites with low thermal expansion", Composites Science and Technology, 2007, v.67, p.1167-1171
CN 104446471 A, 25.03.2015
CN 1891664 A, 10.01.2007
CN 0102285798 A, 21.12.2011
Водогрейный прибор 1928
  • Лазаренко А.И.
  • Лобович В.А.
SU11907A1

RU 2 592 923 C1

Авторы

Кульков Сергей Николаевич

Буякова Светлана Петровна

Дедова Елена Сергеевна

Шадрин Владимир Сергеевич

Шутилова Екатерина Сергеевна

Даты

2016-07-27Публикация

2015-07-02Подача