Изобретение относится к области контроля качества авиационных топлив с помощью оптических средств, преимущественно для определения присадок в топливах для реактивных двигателей, в частности к определению количества присадок «Хайтек-580» и «Агидол-1», и может найти применение в аналитических лабораториях, лабораториях предприятий нефтепродуктообеспечения.
Антиокислительная присадка «Агидол-1» является одной из присадок, улучшающих противоокислительные свойства моторных топлив. Выпускается промышленно. Представляет собой желтый или белый гранулированный порошок с температурой плавления 69-73°C, является индивидуальным веществом 2,6-ди-трет-бутил-4-метил-фенол (ее другое название «ионол») (1 - интернет-сайт http://ru.wikipedia.org/wiki/ионол, 16.04.2015). Добавляется в топлива для реактивных двигателей (РТ, Т-6, Т-8в) в концентрации 0,003-0,004% (2 - ТУ 38.01237-90).
Противоизносная присадка Хайтек-580, входящая в состав топлив для авиационной техники, является одной из присадок, улучшающих противоизносные свойства топлив. Выпускается компанией Afton. Представляет из себя прозрачную янтарную маслянистую жидкость плотностью 0,92 г/мг и температурой застывания -18°C, является многокомпонентной смесью, основным действующим веществом которой является димер линолиевой кислоты (3 - интернет-сайт http://www.aftonchemical.com/ProductDataSheets/Fuel/HiTEC-580_PDS.pdf, 16.04.2015). В топлива для реактивных двигателей ее вводят в количестве 0,002-0,004% (2 - ТУ 38.01237-90).
Крайне малое содержание в топливах для реактивных двигателей делает практически невозможным контроль над наличием и количественным содержанием этих присадок в топливах, а так же обеспечением требуемых свойств топлив.
В связи с этим определение не только наличия, но и количества присадок «Хайтек-580» и «Агидол-1» является важной задачей, обеспечивающей надежность эксплуатации авиационного двигателя.
Перед авторами стояла задача разработать способ определения количества каждой из присадок «Хайтек-580» или «Агидол-1» в топливах для реактивных двигателей, отвечающий следующим требованиям: точность (абсолютная погрешность не более 0,0005% масс.).
При анализе патентной информации и научно-технической литературы было выявлено, что на сегодняшний день не существует способов достоверного определения присадок Хайтек-580 и Агидол-1 в топливах для реактивных двигателей.
Наиболее близким по технической сущности и взятым за прототип является способ определения количества присадки «Меркаптобензотриазол» в авиационных маслах, включающий отбор пробы, спектрофотометрирование, измерение оптической плотности на полосах поглощения 1420,88 см-1 или 3239,60 см-1, принимая за базовую полосу поглощения или 1437,67 см-1, или 3380,95 см-1 соответственно, и последующий расчет концентрации присадки по следующей зависимости:
где С - количество присадки «Меркаптобензотиазол», мас.%;
ΔD - разность оптических плотностей, безразмерная
ΔD=D1420-D1437, для полосы поглощения 1420,88 см-1,
ΔD=D3239-D3380, для полосы поглощения 3239,60 см-1;
D1420 - оптическая плотность полосы поглощения 1420,88 см-1;
D1437 - оптическая плотность базовой полосы поглощения 1437,67 см-1;
D3239 - оптическая плотность полосы поглощения 3239,60 см-1;
D3380 - оптическая плотность базовой полосы поглощения 3380,95 см-1;
а - экспериментально полученный коэффициент, безразмерный
а=0,592 для полосы поглощения 1420,88 см-1;
а=0,0105 для полосы поглощения 3380,95 см-1;
t - толщина кюветы, мм;
b - экспериментально полученный коэффициент, (мм×мас.%)-1
b=2,56 (мм×мас.%)-1 для полосы поглощения 1420,88 см-1;
b=0,950 (мм× мас.%)-1 для полосы поглощения 3380,95 см-1.
(Патент №2489716 G01N 33/30, G01N 21/17).
При проведении научных исследований авторы пытались использовать известный способ - прототип для определения качественного и количественного содержания присадок «Хайтек-580» и «Агидол-1», однако это не привело к желаемому результату, так как по физической сущности присадки «Меркаптобензотриазол», «Хайтек-580» и «Агидол-1» различны, что говорит об ограниченной области применения прототипа.
Технический результат изобретения - расширение номенклатуры способов, определяющих присадки в топливах для реактивных двигателей, с использованием ИК-спектроскопии без снижения требований точности.
Указанный технический результат достигается тем, что в способе определения количества присадки «Хайтек-580» и «Агидол-1» в реактивном топливе, включающем отбор пробы, измерение оптической плотности и последующий расчет концентрации присадки по математической зависимости, согласно изобретению пробу разделяют на две равные части, одну из которых перед спектрофотометрированием выпаривают под вакуумом 0,5 МПа, постепенно нагревая до 214±0,5°C и замеряя текущее значение объема пробы, после достижения которого 5-10 мл замеряют оптическую плотность остатка пробы на полосе поглощения 1711,32 см-1 и фиксируют ее значение, равное длине отрезка от пика спектра до точки пересечения с базовой линией, проведенной между минимальными значениями оптической плотности остатка пробы на полосах поглощения 1761,68 см-1 и 1699,0 см-1, после чего рассчитывают количество присадки Хайтек-580 по следующей зависимости:
где СX - концентрация присадки Хайтек-580, мас.% ;
D - оптическая плотность пробы (от пика до базовой линии);
а=0,0028 и b=0,753 - экспериментально полученные коэффициенты;
а другую часть пробы топлива подвергают экстракции, для чего смешивают с этиловым спиртом, который добавляют в пробу в количестве 5% от объема пробы топлива, доводят до однородной консистенции, отстаивают до полного разделения, замеряют показатель преломления экстракта, взятого с нижнего слоя, и определяют суммарное содержание двух присадок по следующей зависимости:
где Ссум - суммарное содержание присадок, мас.%;
K1=3,333 и К2=4,5589 - эмпирические коэффициенты, полученные по результатам экспериментальных исследований;
- измеренный показатель преломления экстракта;
а количество присадки Агидол-1 оценивают по разности двух расчетных величин Ссум и СX.
Для достижения технического результата были искусственно приготовлены опытные образцы, представляющие собой композиции топлива РТ с различными концентрациями присадок «Хайтек-580» и «Агидол-1»: по 0,001%; 0,002%; 0,003%; 0,004%, которые представлены в таблице 1.
Все искусственно приготовленные образцы прошли исследование на однолучевом ИК-Фурье спектрометре (Nicolet 6700) со спектральным диапазоном от 4000 до 450 см-1 и разрешающей способностью 1 см-1, погрешностью фотометрирования не более 1% и с абсорбционной кюветой с окнами из бромида калия (KBr) с толщиной кюветы 0,025 мм (4 - интернет-сайт http://intertech-corp.ru, 16.04.2015).
Способ реализуется следующим образом.
Отобранную пробу разделили на две равные части (по 500 см3), из одной части приготовленных образцов провели концентрирование методом вакуумной перегонки, для чего пробу топлива в 500 см разгоняют на вакуумном испарителе (во избежание образования продуктов окисления) под вакуумом 0,5 МПа, постепенно повышая температуру пробы до 210-215°C, пока объем остатка не станет 5-10 см3. Затем остаток помещают в мерную колбу на 10 см3 и доводят гептаном до метки колбы, взбалтывают и измеряют оптическую плотность образца на полосе поглощения 1711,32 см-1 и базовой линией на 1761,68-1699,0 см-1 для каждого образца. Для присадки «Хайтек-580» строят график зависимости оптической плотности от ее концентрации, он имеет вид прямой. Путем математической обработки экспериментальных данных получили значения постоянных коэффициентов а=0,0028 и b=0,753, что позволило получить формулу расчета концентрации присадки «Хайтек-580» в топливах для реактивных двигателей:
Полученные данные согласуются с законом Бугера-Ламберта-Бера, выражающим связь оптической плотности и концентрации поглощающего вещества (5 - Казицина Л.А., Куплетская М.Б. Применение УФ, ИК, ЯМР спектроскопии в органической химии. М.: МГУ им. Ломоносова, Химфак, 1968, с. 10).
Параллельно с этим другую часть пробы топлива подвергают экстракции, для чего смешивают с этиловым спиртом, который добавляют в пробу объемом 500 см3 в количестве 25 см3 (5% от объема пробы топлива), доводят до однородной консистенции путем встряхивания не менее 5 минут, отстаивают смесь не менее 10 минут, затем часть экстракта отбирают и на рефрактометре измеряют показатель преломления для каждого образца. Для присадок «Хайтек-580» и «Агидол-1» строят график зависимости коэффициента преломления спиртовой вытяжки от суммарной концентрации, он имеет вид прямой. Путем математической обработки экспериментальных данных получили значения постоянных коэффициентов К1=3,333 и К2=4,5580, что позволило получить формулу расчета суммарной концентрации присадок «Хайтек-580» и «Агидол-1» в топливах для реактивных двигателей:
Содержание присадки «Агидол-1» рассчитывают, вычитая содержание присадки Хайтек-580 из суммарного содержания присадок. (Результаты в табл. 1).
Таким образом полученный способ определения количества присадок «Хайтек-580» и «Агидол-1» в топливах для реактивных двигателей позволяет контролировать качество топлив для реактивных двигателей и в конечном итоге повысить надежность техники.
Для подтверждения получения технического результата были исследованы образцы топлива РТ, с различной концентрацией присадок «Хайтек-580» и «Агидол-1», изготовленные разными заводами (Результаты в табл. 2).
Образец РТ (Танеко) Нижнекамского НПЗ показал несоответствие содержания присадок «Хайтек-580» и «Агидол-1» (строчки 13 и 15 соответственно) указанным в сопроводительной документации (строчки 4 и 5 соответственно), что в дальнейшем было косвенно подтверждено другими методами исследования топлива.
Полученные значения концентраций заявляемым способом обеспечивают необходимую точность измерения концентраций присадок «Хайтек-580» и «Агидол-1». Отклонения концентраций присадок находятся в пределах допустимой нормы.
Таким образом, изобретение расширяет номенклатуру способов, определяющих присадки в топливах для реактивных двигателей, и позволяет определять концентрации присадок «Хайтек-580» и «Агидол-1» в топливах для реактивных двигателей.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения наличия противоизносной присадки "Хайтек 580" в топливе для реактивных двигателей | 2023 |
|
RU2799121C1 |
Способ определения содержания присадки "Агидол-1" в дизельных топливах | 2020 |
|
RU2746540C1 |
Способ определения депрессорно-диспергирующих присадок в дизельном топливе | 2021 |
|
RU2756706C1 |
АВИАЦИОННОЕ СКОНДЕНСИРОВАННОЕ ТОПЛИВО (ВАРИАНТЫ) | 2013 |
|
RU2577520C2 |
Способ определения содержания присадки "Агидол-1" в топливах для реактивных двигателей | 2016 |
|
RU2616259C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ПРИСАДКИ ДЕТЕРСОЛ-140 В МОТОРНЫХ МАСЛАХ ДЛЯ АВТОМОБИЛЬНОЙ ТЕХНИКИ | 2006 |
|
RU2304281C1 |
ПРОТИВОИЗНОСНАЯ ПРИСАДКА К ТОПЛИВАМ ДЛЯ РЕАКТИВНЫХ ДВИГАТЕЛЕЙ | 2017 |
|
RU2649396C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ПРИСАДКИ "МЕРКАПТОБЕНЗОТИАЗОЛ" В МАСЛАХ ДЛЯ АВИАЦИОННОЙ ТЕХНИКИ | 2012 |
|
RU2489716C1 |
АНТИДЕТОНАЦИОННАЯ ДОБАВКА "ОКТА 2" И ТОПЛИВО С УКАЗАННОЙ ДОБАВКОЙ | 2015 |
|
RU2586688C1 |
Присадка противоизносная к топливу для реактивных двигателей "GT-2017" | 2018 |
|
RU2694884C1 |
Изобретение относится к области контроля качества топлив для реактивных двигателей с помощью оптических средств, в частности к определению количества присадок «Хайтек-580» и «Агидол-1», и может найти применение в аналитических лабораториях, лабораториях предприятий нефтепродуктообеспечения. Способ включает отбор пробы, спектрофотометрирование с измерением оптической плотности на определенных длинах волн, рефрактометрию и последующий расчет концентраций присадок в топливе по математической зависимости, причем перед спектрофотометрированием проводится предварительное многократное концентрирование образца пробы топлива, а перед рефрактометрией проводится экстракция присадок этиловым спиртом. Изобретение обеспечивает расширение номенклатуры способов, определяющих присадки в топливах для реактивных двигателей, с использованием ИК-спектроскопии без снижения требований точности. 2 табл.
Способ определения количества присадок «Хайтек-580» и «Агидол-1» в топливах для реактивных двигателей, включающий отбор пробы, измерение оптической плотности и последующий расчет концентрации присадки по математической зависимости, отличающийся тем, что пробу разделяют на две равные части, одну из которых перед спектрофотометрированием выпаривают под вакуумом 0,5 МПа, постепенно нагревая до 214±0,5°С и замеряя текущее значение объема пробы, после достижения которого 5-10 мл замеряют оптическую плотность остатка пробы на полосе поглощения 1711,32 см-1 и фиксируют ее значение, равное длине отрезка от пика спектра до точки пересечения с базовой линией, проведенной между минимальными значениями оптической плотности остатка пробы на полосах поглощения 1761,68 см-1 и 1699,0 см-1, после чего рассчитывают количество присадки Хайтек-580 по следующей зависимости:
где СX - концентрация присадки Хайтек-580, мас.%; D - оптическая плотность пробы (от пика до базовой линии); а=0,0028 и b=0,753 - экспериментально полученные коэффициенты; а другую часть пробы топлива подвергают экстракции, для чего смешивают с этиловым спиртом, который добавляют в пробу в количестве 5% от объема пробы топлива, доводят до однородной консистенции, отстаивают до полного разделения, замеряют показатель преломления экстракта, взятого с нижнего слоя, и определяют суммарное содержание двух присадок по следующей зависимости:
где Ссум - суммарное содержание присадок, мас.%; K1=3,333 и К2=4,5589 - эмпирические коэффициенты, полученные по результатам экспериментальных исследований; - измеренный показатель преломления экстракта; а количество присадки Агидол-1 оценивают по разности двух расчетных величин Ссум и СX.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ПРИСАДКИ "МЕРКАПТОБЕНЗОТИАЗОЛ" В МАСЛАХ ДЛЯ АВИАЦИОННОЙ ТЕХНИКИ | 2012 |
|
RU2489716C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ПРИСАДКИ ДЕТЕРСОЛ-140 В МОТОРНЫХ МАСЛАХ ДЛЯ АВТОМОБИЛЬНОЙ ТЕХНИКИ | 2006 |
|
RU2304281C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НАЛИЧИЯ ДЕПРЕССОРНЫХ ПРИСАДОК В ДИЗЕЛЬНЫХ ТОПЛИВАХ | 2001 |
|
RU2199738C1 |
CN 103308472 A, 18.09.2013 | |||
JP 2006322437 A, 30.11.2006 | |||
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Авторы
Даты
2016-08-10—Публикация
2015-05-21—Подача