СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ РАКЕТЫ Российский патент 2016 года по МПК B64C19/00 F42B15/01 F41G7/26 

Описание патента на изобретение RU2595282C1

Изобретение относится к военной технике, преимущественно к тактическим и оперативно-тактическим комплексам управляемого ракетного оружия (УРО) с баллистическими (аэробаллистическими) и высотными крылатыми ракетами.

Известны комплексы УРО, обеспечивающие поражение целей управляемыми (самонаводящимися) баллистическими и крылатыми ракетами - см., например, Е.Б. Волков, Г.Ю. Мазинг, В.Н. Сокольский «Твердотопливные ракеты», М., Машиностроение, 1992, стр. 275-280; С.А. Головин, Ю.Г. Сизов, А.Л. Скоков, Л.Л. Хунданов «Высокоточное оружие и борьба с ним», М., изд-во «В.П.К.», 1996.

Известен способ управления полетом баллистического самонаводящегося реактивного снаряда, обеспечивающий высокоточное поражение цели за счет размещения на борту снаряда системы наведения (СН), в т.ч. оптико-электронной - см., например, патент РФ №2216708, приоритет от 25.03.2002 (ближайший аналог).

Однако способ - ближайший аналог - при оснащении баллистического реактивного снаряда оптико-электронной СН корреляционно-экстремального типа не обеспечивает заданной точности попадания при наличии облачности в районе цели свыше 3 баллов.

Техническим результатом предлагаемого изобретения является расширение погодного диапазона применения баллистических и высотных крылатых ракет с оптико-электронными СН корреляционно-экстремального типа.

Указанный технический результат достигается тем, что в состав оптико-электронной корреляционно-экстремальной СН ракеты дополнительно вводят лазерный высотомер (ЛВ), функционирование СН начинают на удалении от цели и при высоте полета ракеты 1…20 км, при этом, в случае приема ЛВ отраженных подстилающей поверхностью сигналов выше порогового уровня, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию пикирующей траектории ракеты вплоть до окончания полета, а в случае приема ЛВ отраженных сигналов ниже порогового уровня осуществляют программный маневр ракеты в плоскости стрельбы с выходом на участок пологого планирования на высоте 100…500 м за 0,5…15,0 км от цели, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию планирующей траектории ракеты, с пикирующим конечным участком за 0,1…2,0 км от цели, вплоть до окончания полета.

Принципиальные схемы траекторий движения ракеты в зоне цели при реализации предложенного технического решения представлены на фиг. 1, 2.

Приняты обозначения:

1 - высотная (в т.ч. баллистическая) траектория полета ракеты;

2 - некоторое «мгновенное» положение ракеты на траектории;

3 - цель;

4 - подстилающая поверхность;

5 - облачный слой в районе цели;

6 - зондирующие сигналы ЛВ;

7 - зона проведения корреляционно-экстремальной привязки оптико-электронной СН и коррекции траектории ракеты;

8 - близкий к горизонтальному участок движения ракеты (пологое планирование ракеты).

На фиг. 1 приведена схема движения ракеты поз. 2 по баллистической траектории поз. 1 с коррекцией при пикировании в зоне поз. 7 вплоть до поражения цели поз. 3. При этом на удалении 1…20 км от цели поз. 3 и с высоты 1…20 км оптико-электронная корреляционно-экстремальная СН ракеты поз. 2 осуществляет лоцирование подстилающей поверхности поз. 4 посредством зондирующих сигналов поз. 6 дополнительно введенного ЛВ. При незначительном (1-2 балла) облачном слое поз. 5 в районе цели поз. 3 либо отсутствии облаков - зондирующие сигналы поз.6, отразившись от подстилающей поверхности поз. 4 и достигнув ракеты поз. 2, энергетически превышают программно заданное пороговое значение. Для оптико-электронной СН ракеты поз. 2 - это признак «достаточной» метеорологической дальности видимости (МДВ) для ее штатной работы. В этом случае корреляционно-экстремальная работа СН (координатная привязка ракеты посредством сравнения наблюдаемого и эталонного изображений подстилающей поверхности) осуществляется при пикировании ракеты поз. 2 в зоне поз. 7 вплоть до поражения цели поз. 3.

На фиг. 2 приведена схема движения ракеты поз. 2 с программным маневром на конечном участке. Лоцирование ЛВ с борта ракеты поз. 2 подстилающей поверхности поз. 4 начинается на высотной траектории поз. 1 аналогично схеме на фиг. 1. При значительном облачном слое поз. 5 зондирующие сигналы поз. 6 ЛВ, интенсивно затухая при прямом и обратном (после отражения от подстилающей поверхности поз. 4) ходе в облачном слое поз. 5, не достигают заданного порогового значения. Для оптико-электронной СН ракеты поз. 2 - это признак «недостаточной» МДВ для ее штатной работы. В этом случае ракета поз. 2 программно выполняет маневр «выполаживания» на высоте 100…500 м над подстилающей поверхностью поз. 4 (в плоскости стрельбы). Корреляционно-экстремальная привязка СН ракеты поз. 2 осуществляется в зоне поз. 7 при минимальной высоте полета ракеты на протяжении 0,51…5,0 км участка поз. 8, близкого к горизонтальному (пологого планирования) вплоть до пикирования на цель поз. 3 в конце участка поз. 8 за 0,1…2,0 км до цели. Таким образом, с учетом данных дополнительно введенного в состав СН лазерного высотомера, появляется возможность оперативной - непосредственно в полете ракеты поз. 2 - оценки уровня МДВ и адаптивного выбора тактики высокоточного поражения цели поз. 3.

Маловысотный участок движения поз. 8 позволяет кардинально уменьшить толщину облачного слоя поз. 5, через который производится лоцирование ЛВ подстилающей поверхности поз. 4. При этом, как правило, достигается превышение порогового значения сигналами поз. 6 (т.е. возможна штатная работа оптико-электронной СН ракеты на высоте пологого планирования). Следует также отметить, что оптико-электронная СН корреляционно-экстремального типа допускает, в принципе, определение типа и балльности облачности в зоне цели с большой (надоблачной) высоты полета ракеты, что, в перспективе, может быть использовано для оперативной коррекции величины порогового значения принимаемых зондирующих сигналов поз. 6 и, соответственно, уточнения значения высоты участка поз. 8 над подстилающей поверхностью поз. 4.

Применение предложенного технического решения представляется целесообразным для перспективных комплексов высокоточного УРО на базе баллистических (аэробаллистических) и крылатых ракет с оптико-электронными СН корреляционно-экстремального типа для расширения погодного диапазона их применения.

Похожие патенты RU2595282C1

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ РАКЕТЫ 2023
  • Матюнин Игорь Анатольевич
  • Панков Василий Алексеевич
  • Сагдуллаев Юрий Сагдуллаевич
RU2826814C1
СПОСОБ НАВИГАЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА 2018
  • Леонов Александр Георгиевич
  • Мартынов Вячеслав Иванович
  • Свинцов Анатолий Вячеславович
  • Большаков Михаил Валентинович
  • Лавренов Александр Николаевич
  • Кулаков Александр Валерьевич
  • Петухов Роман Андреевич
  • Иванов Илья Александрович
  • Свирин Николай Степанович
  • Костромин Никита Сергеевич
RU2686453C1
СИСТЕМА КОРРЕКЦИИ ОШИБОК ИНС ЛЕТАТЕЛЬНОГО АППАРАТА ПО ДОРОЖНОЙ КАРТЕ МЕСТНОСТИ 2018
  • Сорокин Артем Константинович
  • Важенин Владимир Григорьевич
  • Боков Александр Сергеевич
RU2684710C1
СВЕРХЗВУКОВАЯ РАКЕТА 2017
  • Леонов Александр Георгиевич
  • Лавренов Александр Николаевич
RU2686567C2
СПОСОБ ЭКСТРЕННОЙ ДОСТАВКИ СРЕДСТВ СПАСЕНИЯ ОБЪЕКТАМ СПАСЕНИЯ, ПОПАВШИМ В ЭКСТРЕМАЛЬНЫЕ УСЛОВИЯ И ТЕРПЯЩИМ БЕДСТВИЕ В УДАЛЕННЫХ БЕЗЛЮДНЫХ РАЙОНАХ ЗЕМНОГО ШАРА С НЕТОЧНО ИЗВЕСТНЫМИ КООРДИНАТАМИ И АЭРОБАЛЛИСТИЧЕСКАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Вокин Григорий Григорьевич
RU2076759C1
СПОСОБ ПОРАЖЕНИЯ ЦЕЛИ ВРАЩАЮЩИМСЯ БАЛЛИСТИЧЕСКИМ РЕАКТИВНЫМ СНАРЯДОМ 1999
  • Ефремов Г.А.
  • Бурганский А.И.
  • Хомяков М.А.
  • Лавренов А.Н.
  • Большаков М.В.
RU2158411C1
РАЗВЕДЫВАТЕЛЬНО-УДАРНЫЙ КОМПЛЕКС ВОЗДУШНОГО БАЗИРОВАНИЯ И СПОСОБ ЕГО ФУНКЦИОНИРОВАНИЯ (ВАРИАНТЫ) 2019
  • Горшков Александр Александрович
RU2749249C2
СПОСОБ ПОРАЖЕНИЯ УДАЛЕННЫХ ЦЕЛЕЙ 2019
  • Лисицкий Дмитрий Александрович
  • Ворник Сергей Иванович
  • Новиков Александр Владимирович
  • Митрофанов Виталий Васильевич
RU2730793C1
СПОСОБ ВЫВОДА ДАЛЬНОБОЙНОЙ РАКЕТЫ В ЗОНУ ЗАХВАТА ЦЕЛИ ГОЛОВКОЙ САМОНАВЕДЕНИЯ И СИСТЕМА НАВЕДЕНИЯ ДАЛЬНОБОЙНОЙ РАКЕТЫ 2015
  • Гусев Андрей Викторович
  • Фимушкин Валерий Сергеевич
  • Недосекин Игорь Алексеевич
  • Минаков Владимир Михайлович
  • Гранкин Алексей Николаевич
RU2583347C1
СИСТЕМА НАВЕДЕНИЯ ПРОТИВОСАМОЛЕТНЫХ РАКЕТ 2009
  • Староверов Николай Евгеньевич
RU2400690C1

Иллюстрации к изобретению RU 2 595 282 C1

Реферат патента 2016 года СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ РАКЕТЫ

Изобретение относится к военной технике, преимущественно к тактическим и оперативно-тактическим комплексам управляемого ракетного оружия (УРО) с баллистическими (аэробаллистическими) и высотными крылатыми ракетами. В состав оптико-электронной корреляционно-экстремальной СН ракеты дополнительно вводят лазерный высотомер (ЛВ). Функционирование СН начинают на удалении от цели и при высоте полета ракеты 1…20 км, при этом, в случае приема ЛВ отраженных подстилающей поверхностью сигналов выше порогового уровня, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию пикирующей траектории ракеты вплоть до окончания полета. В случае приема ЛВ отраженных сигналов ниже порогового уровня, осуществляют программный маневр ракеты в плоскости стрельбы с выходом на участок пологого планирования на высоте 100…500 м за 0,5…15,0 км от цели, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию планирующей траектории ракеты, с пикирующим конечным участком за 0,1…2,0 км от цели, вплоть до окончания полета. Изобретение позволяет расширить погодный диапазон применения ракет. 2 ил.

Формула изобретения RU 2 595 282 C1

Способ управления полетом ракеты, включающий прицеливание на пусковой установке, старт, полет по высотной траектории в точку прицеливания, коррекцию траектории полета ракеты на конечном участке по информации оптико-электронной системы наведения (СН), визирующей контрастные ориентиры подстилающей поверхности, отличающийся тем, что функционирование СН начинают на удалении от цели и при высоте полета ракеты 1-20 км путем излучения по местной вертикали и приема лоцирующих сигналов дополнительно введенного лазерного высотомера (ЛВ), при этом, в случае приема ЛВ отраженных подстилающей поверхностью сигналов выше порогового уровня, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию пикирующей траектории ракеты вплоть до окончания полета, а в случае приема ЛВ отраженных подстилающей поверхностью сигналов ниже порогового уровня, осуществляют программный маневр ракеты в плоскости стрельбы с выходом на участок пологого планирования на высоте 100-500 м за 0,5-15,0 км от цели, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию планирующей траектории ракеты, с пикирующим конечным участком за 0,1-2,0 км от цели, вплоть до окончания полета.

Документы, цитированные в отчете о поиске Патент 2016 года RU2595282C1

СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ БАЛЛИСТИЧЕСКОГО САМОНАВОДЯЩЕГОСЯ РЕАКТИВНОГО СНАРЯДА "ПОВЕРХНОСТЬ - ПОВЕРХНОСТЬ" 2002
  • Большаков М.В.
  • Кулаков А.В.
  • Кулаков В.А.
  • Лавренов А.Н.
  • Смирнов А.В.
RU2216708C1
СПОСОБ ПОРАЖЕНИЯ ЦЕЛИ ВРАЩАЮЩИМСЯ БАЛЛИСТИЧЕСКИМ РЕАКТИВНЫМ СНАРЯДОМ 1999
  • Ефремов Г.А.
  • Бурганский А.И.
  • Хомяков М.А.
  • Лавренов А.Н.
  • Большаков М.В.
RU2158411C1
СПОСОБ ПОРАЖЕНИЯ ПОДВИЖНОЙ ЦЕЛИ УПРАВЛЯЕМЫМ СНАРЯДОМ С АКТИВНОЙ СИСТЕМОЙ НАВЕДЕНИЯ И ДОРАЗГОННЫМ ДВИГАТЕЛЕМ 1999
  • Ефремов Г.А.
  • Мельников В.Ю.
  • Раскин В.Х.
  • Царев В.П.
RU2151370C1
СПОСОБ СТРЕЛЬБЫ УПРАВЛЯЕМОЙ РАКЕТОЙ С ЛАЗЕРНОЙ ПОЛУАКТИВНОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ 2011
  • Гусев Андрей Викторович
  • Кузнецов Владимир Маркович
  • Селькин Владислав Владимирович
  • Подчуфаров Юрий Борисович
  • Захаров Олег Владимирович
RU2468327C1
US 4383662 A1, 17.05.1983
DE 3738580 A1, 01.06.1989.

RU 2 595 282 C1

Авторы

Леонов Александр Георгиевич

Мартынов Вячеслав Иванович

Зимин Сергей Николаевич

Большаков Михаил Валентинович

Лавренов Александр Николаевич

Кулаков Александр Валерьевич

Петухов Роман Андреевич

Иванов Илья Александрович

Свирин Николай Степанович

Даты

2016-08-27Публикация

2015-07-15Подача