Изобретение относится к технологии очистки газовых смесей от водорода или его изотопов в статическом режиме из газовоздушных и кислородобедненных газовых смесей, в которых необходимо минимизировать потери кислорода и уменьшить или исключить накопление паров воды в замкнутых объемах, и может быть использовано в электрохимической, химической, радиоэлектронной, приборостроительной и других отраслях промышленности.
Известно устройство для удаления водорода из смеси газов, содержащей водород, кислород, пары воды и аэрозоли, включающее, по меньшей мере, один носитель, покрытый катализаторным материалом для окисления водорода с выделением тепла и содержащее защитное приспособление, соединенное с носителем, описанное в патенте РФ №2010598 от 08.01.1990 г., опубл. 15.04.1994 г., МПК B01J 8/02, B01D 53/22.
К недостаткам известного устройства в условиях замкнутого объема и кислородсодержащей газовой среды следует отнести:
- увеличение влажности внешней газовой среды вследствие образования воды на катализаторе при окислении водорода,
- отсутствие реагентов и элементов конструкции, обеспечивающих восполнение потерь кислорода на окисление водорода, что может привести к полному израсходованию кислорода и, как следствие, к остановке работы устройства.
Наиболее близким и выбранным в качестве прототипа является устройство, описанное в патенте РФ №2121871 от 14.06.1996 г. МПК B01D 7/00, опубл. 20.11.1998 г., под названием «Генератор газа». Устройство содержит корпус в виде полой емкости с областями размещения реагентов, сообщающихся между собой и разделенных мембраной.
К недостаткам прототипа следует отнести отсутствие реагентов и элементов конструкции, обеспечивающих удаление водорода из внешней газовой среды, а также сложную процедуру задействования.
Задачей изобретения является создание устройства для максимально эффективной очистки газовоздушной и кислородобедненной газовой смеси от водорода с минимальным расходом кислорода и ограничением или исключением накопления паров воды в газовой смеси.
Технический результат заключается в повышении эффективности извлечения водорода из газообразной смеси в замкнутых объемах за счет восполнения потерь кислорода, в упрощении процедуры задействования, а также в снижении влажности газовой среды за счет поглощения воды источником кислорода.
Это достигается тем, что в поглотителе водорода, включающем корпус в виде полой емкости с областями размещения реагентов, сообщающимися между собой и разделенными газопроницаемой мембраной, последовательно расположенные области размещения источника кислорода, катализатора и адсорбента разделены перегородками, не менее трех, выполненными перфорированными и расположенными между областью размещения катализатора и газопроницаемой мембраной, выполненной непроницаемой для источника кислорода и продуктов его гидролиза и граничащей с областью размещения источника кислорода, а также между областью размещения катализатора и областью размещения адсорбента, граничащей, в свою очередь, с перегородкой, обеспечивающей газообмен внутреннего объема поглотителя водорода с внешней средой.
Кроме того, корпус выполнен цилиндрическим.
Кроме того, корпус и мембрана выполнены из фторопласта, стойкого в окислительной и щелочной среде.
Кроме того, перфорированные перегородки выполнены из поликарбоната.
Кроме того, в качестве адсорбента использованы гранулы силикагеля и/или цеолита.
Кроме того, в качестве катализатора использованы гранулы оксида алюминия с нанесенным на них палладием.
Кроме того, источник кислорода представляет собой материал, содержащий пероксид и/или надпероксид (супероксид) щелочного металла.
Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».
Новые признаки (последовательно расположенные области размещения источника кислорода, катализатора и адсорбента разделены перегородками, не менее трех, выполненными перфорированными и расположенными между областью размещения катализатора и газопроницаемой мембраной, выполненной непроницаемой для источника кислорода и продуктов его гидролиза и граничащей с областью размещения источника кислорода, а также между областью размещения катализатора и областью размещения адсорбента, граничащей, в свою очередь, с перегородкой, обеспечивающей газообмен внутреннего объема поглотителя водорода с внешней средой), не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».
На фиг. 1 представлен общий вид поглотителя водорода и введены следующие обозначения:
1 - корпус;
2 - перфорированная разделительная перегородка;
3 - область размещения адсорбента;
4 - область размещения катализатора;
5 - мембрана;
6 - область размещения источника кислорода.
На фиг. 2 показана динамика изменения количеств газов при функционировании поглотителя в замкнутом объеме.
Поглотитель водорода содержит (см. фиг. 1) корпус 1 в виде цилиндра, выполненный из конструкционного фторопласта, перфорированные перегородки 2, разделяющие области размещения реагентов и фиксирующие мембрану 5 в корпусе 1, область размещения адсорбента 3, представляющую собой размещенную в тканевом мешке навеску силикагеля, или цеолита, или их комбинацию, область размещения катализатора 4, представляющего собой палладий, нанесенный на гранулы оксида алюминия, мембрану 5, разделяющую область размещения катализатора 4 и область размещения источника кислорода 6, непроницаемую для материала источника кислорода и продуктов его гидролиза и проницаемую для газов, в качестве источника кислорода использован материал, содержащий пероксид и/или надпероксид (супероксид) щелочного металла.
В состоянии хранения (незадействованном) поглотитель закрыт герметичной крышкой (на фиг. 1 не показана). Перед началом работы поглотитель задействуют: снимают крышку с корпуса 1.
Работа поглотителя водорода осуществляется следующим образом. Задействованный поглотитель размещают в замкнутом объеме с очищаемой кислородсодержащей или кислородобедненной газовой средой. Водород из газовой среды за счет диффузии проникает вовнутрь корпуса 1 поглотителя водорода и достигает области размещения палладиевого катализатора 4. Палладиевый катализатор 4 окисляет водород кислородом, имеющимся в газовой среде, с образованием паров воды. Пористая мембрана 5 обеспечивает проникновение образующихся на катализаторе 4 паров воды в область размещения источника кислорода 6, одновременно препятствует проникновению материала источника кислорода 6 и продуктов его гидролиза в область размещения катализатора 4. Материал источника кислорода 6 вступает в реакцию гидролиза с парами воды, образовавшимися на катализаторе 4 при окислении водорода, в результате взаимодействия выделяется кислород. Адсорбер 3 защищает катализатор 4 от воздействия компонентов газовой среды, которые адсорбируются на поверхности адсорбента.
Эмпирический вид реакций окисления водорода и выделения кислорода можно представить в виде уравнений:
Пример 1. Эксперимент проводили в лабораторных условиях. Корпус поглотителя был выполнен из фторопласта. В нем были размещены: адсорбер, где в качестве адсорбента применяли силикагель КСМГ, палладиевый катализатор, представляющий собой гранулы оксида алюминия с нанесенным на них палладием в количестве 2% масс.; источник кислорода - надпероксид натрия. В корпусе также была закреплена пористая фторопластовая мембрана. Перфорированные перегородки выполнены из поликарбоната. Поглотитель был размещен в герметичном контейнере, исходной газовой средой был атмосферный воздух. Во внутреннюю полость контейнера был организован приток водорода. Графики изменения во времени количества газов, находящихся в контейнере и поступивших в него, представлены на фиг. 2. Из фиг. 2 видно, что в течение ≈120 сут в испытательный контейнер поступал водород (см. график 1) общим количеством 1,7 л. В контейнере водород в течение эксперимента практически отсутствовал (см. график 4). Количество кислорода за 120 сут не снизилось (см. график 2), а возросло на 0,8 л. Из поглотителя постоянно выделялся кислород (см. график 3), его общее количество составило 1,3 л. По результатам измерений в течение эксперимента влажность в контейнере снизилась с 6 до 0,5 г/л (на фиг. 2 не показано).
Использование данного изобретения позволит
- повысить эффективность извлечения водорода из газообразной смеси в замкнутых объемах за счет восполнения потерь кислорода;
- упростить процедуру задействования;
- снизить влажность газовой среды за счет поглощения воды источником кислорода.
Таким образом, поглотитель водорода, воплощенный в заявленном изобретении, при его осуществлении способен обеспечить достижение усматриваемого заявителем достигаемого технического результата.
Следовательно, заявленное изобретение соответствует условию «промышленная применимость».
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА РЕГУЛИРОВАНИЯ МНОГОКОМПОНЕНТНОЙ КИСЛОРОДСОДЕРЖАЩЕЙ ГАЗОВОЙ СРЕДЫ В ГЕРМЕТИЧНОМ КОНТЕЙНЕРЕ И СПОСОБ ЗАДЕЙСТВОВАНИЯ СИСТЕМЫ | 2019 |
|
RU2722135C1 |
ПОГЛОТИТЕЛЬНОЕ УСТРОЙСТВО | 2022 |
|
RU2798056C1 |
СПОСОБ ФОРМИРОВАНИЯ КИСЛОРОДОСОДЕРЖАЩЕЙ ГАЗОВОЙ СРЕДЫ С ХРАНЯЩИМИСЯ В НЕЙ ХИМИЧЕСКИ АКТИВНЫМИ МАТЕРИАЛАМИ | 2021 |
|
RU2794596C1 |
СПОСОБ ОЧИСТКИ ГАЗОВОЙ СМЕСИ ОТ ВОДОРОДА И/ИЛИ ЕГО ИЗОТОПОВ | 2012 |
|
RU2550201C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ПОГЛОТИТЕЛЯ | 2021 |
|
RU2774180C1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ВОДОРОДОСОДЕРЖАЩЕЙ СРЕДЫ И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА | 2020 |
|
RU2748214C1 |
ПОГЛОТИТЕЛЬ ВОДОРОДА | 2019 |
|
RU2725252C1 |
СПОСОБ РЕГУЛИРОВАНИЯ СОСТАВА МНОГОКОМПОНЕНТНОЙ ГАЗОВОЙ СРЕДЫ В ГЕРМЕТИЗИРОВАННОМ КОНТЕЙНЕРЕ И УСТРОЙСТВО ГЕРМЕТИЗИРОВАННОГО КОНТЕЙНЕРА | 2022 |
|
RU2793726C1 |
СПОСОБ РЕГУЛИРОВАНИЯ СОСТАВА МНОГОКОМПОНЕНТНОЙ ГАЗОВОЙ СРЕДЫ В ГЕРМЕТИЗИРОВАННОМ КОНТЕЙНЕРЕ И КОНСТРУКЦИЯ ГЕРМЕТИЗИРОВАННОГО КОНТЕЙНЕРА | 2017 |
|
RU2657359C1 |
СПОСОБ ПОГЛОЩЕНИЯ ВОДОРОДА ИЗ ГАЗОВЫХ СМЕСЕЙ | 1995 |
|
RU2112737C1 |
Изобретение относится к области химии. Поглотитель водорода размещают в замкнутом объеме с очищаемой кислородсодержащей или кислородобедненной газовой средой. Обеспечивают окисление содержащегося в смеси водорода на палладиевом катализаторе 4. Образующиеся пары воды проникают через мембрану 5 в область размещения источника кислорода 6. В результате проводимой реакции гидролиза в области 6 получают кислород. Изобретение позволяет повысить эффективность извлечения водорода из газообразной смеси в замкнутых объемах за счет восполнения потерь кислорода, снизить влажность газовой среды за счет поглощения воды источником кислорода. 6 з.п. ф-лы, 2 ил., 1 пр.
1. Поглотитель водорода, включающий корпус в виде полой емкости с областями размещения реагентов, сообщающимися между собой и разделенными газопроницаемой мембраной, отличающийся тем, что последовательно расположенные области размещения источника кислорода, катализатора и адсорбента разделены перегородками, не менее трех, выполненными перфорированными и расположенными между областью размещения катализатора и газопроницаемой мембраной, выполненной непроницаемой для источника кислорода и продуктов его гидролиза и граничащей с областью размещения источника кислорода, а также между областью размещения катализатора и областью размещения адсорбента, граничащей, в свою очередь, с перегородкой, обеспечивающей газообмен внутреннего объема поглотителя водорода с внешней средой.
2. Поглотитель водорода по п. 1, отличающийся тем, что корпус выполнен цилиндрическим.
3. Поглотитель водорода по п. 1, отличающийся тем, что корпус и мембрана выполнены из фторопласта.
4. Поглотитель водорода по п. 1, отличающийся тем, что перфорированные перегородки выполнены из поликарбоната.
5. Поглотитель водорода по п. 1, отличающийся тем, что в качестве адсорбента использованы гранулы силикагеля и/или цеолита.
6. Поглотитель водорода по п. 1, отличающийся тем, что в качестве катализатора использованы гранулы оксида алюминия с нанесенным на них палладием.
7. Поглотитель водорода по п. 1, отличающийся тем, что источник кислорода представляет собой материал, содержащий пероксид и/или надпероксид (супероксид) щелочного металла.
ГЕНЕРАТОР ГАЗА | 1996 |
|
RU2121871C1 |
СЕРПИОНОВА Е.Н | |||
Промышленная адсорбция газов и паров, Москва, Высшая школа, 1969, с.5, 49 | |||
Катализатор для удаления водорода из газовой смеси | 1989 |
|
SU1779224A3 |
УСТРОЙСТВО ДЛЯ УДАЛЕНИЯ ВОДОРОДА ИЗ СМЕСИ ГАЗОВ, СОДЕРЖАЩЕЙ ВОДОРОД, КИСЛОРОД, ПАР И АЭРОЗОЛИ | 1991 |
|
RU2010598C1 |
ГИДРАВЛИЧЕСКАЯ СИСТЕМА УПРАВЛЕНИЯ КЛАПАНАМИ ГАЗОРАСПРЕДЕЛЕНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 1999 |
|
RU2163299C2 |
Авторы
Даты
2016-09-10—Публикация
2015-06-19—Подача