ГИБКАЯ ТРУБА, СПОСОБ ЕЕ ОБОГРЕВА И ЕЕ ПРИМЕНЕНИЕ ДЛЯ ТРАНСПОРТИРОВКИ СЫРОЙ НЕФТИ Российский патент 2016 года по МПК F16L9/12 

Описание патента на изобретение RU2598618C2

Изобретение относится к термостируемым трубопроводам, в частности к гибкой трубе, способу ее обогрева и ее применению.

Подобная гибкая труба обладает многослойной конструкцией с несвязанными между собой слоями.

Для соответствия англоязычной терминологии подобную трубу в нижеследующем описании называют многослойной гибкой трубой, состоящей из несвязанных между собой слоев (кратко «многослойной гибкой трубой»). Подобная труба эффективно препятствует диффузии газов из транспортируемой жидкости, в связи с чем ее можно использовать для транспортировки жидких или газообразных сред, особенно предпочтительно сырой нефти или природного газа.

Многослойные гибкие трубы указанного типа известны из уровня техники. Они снабжены внутренней обкладкой, которая обычно имеет форму полимерной трубы и служит барьером для выхода транспортируемой жидкости, а также одним или несколькими армирующими слоями с наружной стороны внутренней обкладки. Многослойная гибкая труба указанного типа может включать дополнительные слои, например, один или несколько армирующих слоев с внутренней стороны внутренней обкладки, предназначенных для предотвращения смыкания стенок внутренней обкладки при высоком внешнем давлении. Подобные внутренние армирующие слои обычно называют каркасом. Кроме того, может быть предусмотрена наружная оболочка, которая служит барьером для проникания жидкости из внешней среды в армирующие слои или другие внутренние полимерные или металлические функциональные слои. Между наружными армирующими слоями во многих случаях помещают слой термопласта, например, в виде намотанной противоизносной ленты, который предназначен для предотвращения износа, обусловленного трением относительно металлических конструкций.

Типичные многослойные гибкие трубы описаны, например, в международной заявке WO 01/61232, а также в патентах США US 6123114 и US 6085799; кроме того, они подробно охарактеризованы в практических рекомендациях Американского нефтяного интститута (АНИ) 17 В "Recom-mended Practice for Flexible Pipe", 3-е издание, март 2002, а также в технических условиях АНИ 17j "Specification for Unbonded Flexible Pipe", 2-е издание, ноябрь 1999.

В этой связи определение слоев многослойной трубы «несвязанные» означает, что по меньшей мере два слоя, включая армирующие и полимерные слои, конструктивно не соединены друг с другом. Благодаря этому труба обладает гибкостью и эластичностью, достаточной для ее сматывания с целью транспортировки.

Многослойные гибкие трубы указанного типа в разных вариантах конструктивного исполнения пригодны для морского применения, а также в различных сферах берегового применения и служат для транспортировки жидкостей, газов и пульпы. Их можно использовать, например, для транспортировки жидкостей там, где трубы вдоль всей их протяженности находятся под чрезвычайно высоким давлением воды или под варьируемым в широком диапазоне давлении воды, например, в качестве напорных трубопроводов, которые поднимаются с морского дна к тому или иному устройству или проходят вблизи от поверхности моря; кроме того, в общем случае их можно использовать для транспортировки жидкостей или газов между разными устройствами в качестве труб, укладываемых на большой глубине на морском дне, или в качестве труб, соединяющих устройства вблизи морской поверхности.

В обычных гибких трубах армирующий слой или армирующие слои в большинстве случаев состоят из расположенных в виде спирали стальной проволоки, стальных профильных элементов или стальных лент, причем витки отдельных слоев могут обладать варьируемым углом наклона к оси трубы.

Внутренняя обкладка труб из уровня техники обычно образована полиолефином, таким как полиэтилен, который может быть также сшитым, полиамидом, таким как РА11 или PA12, или поливинилиденфторидом (PVDF). Наряду с этим известны однословные или многослойные обкладки, которые могут содержать также слои из других материалов.

При температурах ниже 40°С некоторые компоненты сырой нефти могут выпадать в осадок. Речь здесь прежде всего идет об осадках в виде восков и в некоторых случаях гидратов, которые могут обусловливать сокращение свободного сечения трубы. Для предотвращения подобного эффекта и обеспечения транспортировки также при низких температурах указанные трубопроводы должны быть обогреваемыми. Существуют разные возможности обогрева указанных трубопроводов.

В международной заявке WO 91/18231 описана система обогреваемых гибких труб, которая включает электропроводящие кабели, соединенные с электропроводящим источником тока и производящие тепло в соответствии с принципом резистивного нагрева. Недостатками указанной системы являются дорогостоящее проектирование и неравномерность поддержания температуры вдоль всей протяженности труб.

Кроме того, в международной заявке WO 97/20162 описана система гибких труб, причем вокруг гибкого внутреннего трубопровода располагаются несколько меньших трубопроводов. Последние можно использовать для транспортировки технологических сред или потока. Термостатирование системы труб можно осуществлять также путем пропускания термостатирующей среды. К недостаткам подобной системы также относятся дорогостоящее проектирование, теплопотери и неравномерность поддержания температуры вдоль всей протяженности труб.

Международные заявки WO 92/11487, WO 85/04941, WO 2000/66934, WO 2000/66935 и WO 2001/07824 относятся к тепловой изоляции в виде пассивной стабилизации температуры среды. Однако при этом возникает проблема сжимаемости часто используемых вспененных структур. В случае значительных водных глубин, соответственно высоких внешних давлений, указанное обстоятельство может обусловливать снижение изолирующего действия.

Другая возможность обогрева описана в международных заявках WO 2006/097765 и WO 2006/090182, а также в патентах США US 2008202616 и US 4874925. Речь при этом идет о многослойной трубе, в которой имеются, например, два внедренных в проводящий слой проводника, которые смещены относительно друг друга вдоль трубы на угол 180°. Благодаря протеканию тока от одного проводника к другому происходит нагревание проводящего слоя. Важным условием для равномерного нагревания является подключение проводника к проводящему слою, соответственно равномерный контакт проводника с проводящим слоем. Проводящий слой снаружи термически и при необходимости электрически изолирован. Для электрического изолирования целесообразным, соответственно необходимым является наличие дополнительного слоя со стороны нефти.

В международной заявке WO 2008/005829 описаны обогреваемые трубопроводы для автомобильной промышленности, которые могут содержать электропроводящий полимерный слой, причем действие указанного слоя основано на принципе резистивного нагрева.

В основу настоящего изобретения была положена задача предложить гибкую трубу многослойной конструкции, посредством которой транспортируемую среду можно электрически нагревать без существенных дополнительных затрат на конструирование. При этом должна быть обеспечена возможность целевого обогрева только тех участков трубы, которые действительно нуждаются в нем.

Указанная задача согласно изобретению решается благодаря гибкой трубе, которая содержит в направлении изнутри наружу следующие слои:

- внутреннюю обкладку,

- по меньшей мере один армирующий слой и

- при необходимости наружную оболочку,

причем между двумя слоями дополнительно находится другой слой в виде намотанной ленты, причем лента содержит следующие слои:

a) первый наружный слой (1) из неэлектропроводящей полимерной формовочной массы,

b) промежуточный слой (2) из электропроводящей полимерной формовочной массы, удельное объемное сопротивление которой согласно IEC 60093 составляет от 10-3

до 1010 Ом, предпочтительно от 10-2 до 108 Ом, особенно предпочтительно от 10-1 до 107 Ом, в частности, предпочтительно от 100 до 106 Ом, причем вдоль ленты в промежуточный слой внедрены по меньшей мере два металлических проводника (4) таким образом, что они не контактируют друг с другом по всей длине, а также с) второй наружный слой (3) из неэлектропроводящей полимерной формовочной массы.

Лента с соответствующими позициями показана на фиг.1 и 2.

Внутренней обкладкой обычно является полимерная труба, которая служит барьером для выхода транспортируемой жидкости. В зависимости от сферы технического применения полимерная труба может быть однослойной или также многослойной, состоящей соответственно из разных формовочных масс. Многослойная труба может состоять, например, из двух, трех или четырех слоев, а в некоторых случаях из большего количества слоев. Подобные обкладки известны из уровня техники. В другом варианте внутренняя обкладка может состоять из гофрированной тонкостенной металлической трубы.

Армирующий слой или соответственно армирующие слои обычно образованы стальной проволокой, стальными профильными элементами или стальными лентами в форме спирали. Конструктивное исполнение армирующих слоев известно из уровня техники. По меньшей мере один из подобных армирующих слоев предпочтительно выполнен таким образом, что он выдерживает внутреннее давление, тогда как по меньшей мере один другой армирующий слой выполнен таким образом, что он выдерживает растягивающие усилия. Обычно труба включает более двух армирующих слоев. К армирующим слоям примыкает наружная оболочка, которая обычно имеет форму трубы или рукава из термопластичной формовочной массы или эластомера.

В одном возможном варианте исполнения гибкой трубы указанного выше типа с внутренней стороны внутренней обкладки находится каркас. Подобные каркасы и варианты их исполнения известны из уровня техники. В другом варианте исполнения гибкая труба не имеет каркаса, что прежде всего относится к случаю, если она не подлежит эксплуатации при высоких внешних давлениях.

Пригодными материалами электропроводящей полимерной формовочной массы, а также обеих неэлектропроводящих полимерных формовочных масс независимо друг от друга являются формовочные массы, например, на основе олефиновых полимеров, полиамидов, фторполимеров, полиэтилен-2,6-нафталата, полибутилен-2,6-нафталата, полифенилсульфона, полиариленэфиркетона, полифениленсульфида или смесей полиарилен-эфиркетона с полифениленсульфидом.

Олефиновьм полимером в первую очередь может являться полиэтилен, в частности полиэтилен высокой плотности (НВРЕ), или изотактический или синдиотактический полипропилен. Полипропилен может быть гомополимером или сополимером пропилена, например, с этиленом или 1-бутеном в качестве сомономера, причем можно использовать как статистические сополимеры, так и блок-сополимеры. Кроме того, можно использовать модифицированный ударопрочный полипропилен, например, полипропилен, модифицированный согласно уровню техники каучуком на основе этиленпропиленового мономера (ЕРМ) или каучуком на основе этиленпропилендиенового мономера (EPDM). Синдиотактический полистирол, также используемый согласно изобретению, может быть синтезирован известным методом полимеризации стирола, катализируемой металлоценами.

Полиамид может быть получен из комбинации диамина с двухосновной карбоновой кислотой, из ω-аминокарбоновой кислоты или соответствующего лактама. В принципе можно использовать любой полиамид, например РА6 или РА66. В предпочтительном варианте мономерные единицы полиамида в среднем содержат по меньшей мере 8, по меньшей мере 9 или соответственно по меньшей мере 10 атомов углерода. В случае смесей лактамов речь идет о среднем арифметическом числе атомов углерода. В случае комбинации диамина с двухосновной карбоновой кислотой среднее арифметическое число атомов углерода диамина и двухосновной карбоновой кислоты в соответствии с этим предпочтительным вариантом должно составлять по меньшей мере 8, по меньшей мере 9 или соответственно по меньшей мере 10. Пригодными полиамидами являются, например, РА610 (его можно получать из гексаметилендиамина [6 атомов углерода] и себациновой кислоты [10 атомов углерода]; среднее число атомов углерода в мономерных единицах в данном случае соответственно составляет 8), РА88 (его можно получать из октаметилендиамина и 1.8-октан-дикарбоновой кислоты), РА8 (его можно получать из каприллактама), РА612, РА810, РА108, РА9, РА613, РА614, РА812, РА128, РА1010, РА10, PA814, PA148, PA1012, РАН, РА1014, РА1212 и РА12. Синтез полиамидов известен из уровня техники. Очевидно, можно использовать также известные из уровня техники сополиамиды, причем при необходимости можно использовать также сомономеры, такие как капролактам.

В качестве полиамида предпочтительно можно использовать также частично ароматический полиамид, причем от 5 до 100% мол. содержащихся в нем структур, производных двухосновной карбоновой кислоты, образованы ароматической двухосновной карбоновой кислотой с 8-22 атомами углерода, и причем температура плавления кристаллитов (Tm) составляет по меньшей мере 260°С, предпочтительно по меньшей мере 270°С, особенно предпочтительно по меньшей мере 280°С. Подобные полиамиды обычно называют полифталамидами (РРА). Их можно получать из комбинации диамина с двухосновной карбоновой кислотой при необходимости с добавлением ω-аминокарбоновой кислоты или соответствующего лактама. Пригодными являются, например, РА66/6Т, РА6/6Т, PA6T/MPMDT (MPMD означает 2-метилпентаметилендиамин), РА9Т, РА10Т, РАНТ, РА12Т и РА14Т, а также сополиконденсаты этих последних типов с алифатическим диамином и алифатической двухосновной карбоновой кислотой или с ω-аминокарбоновой кислотой, соответственно лактамом.

Помимо полиамида формовочная масса может содержать другие компоненты, например, такие как модификаторы ударной вязкости, другие термопласты, пластификаторы и другие обычные добавки. Необходимо лишь, чтобы полиамид образовывал матрицу формовочной массы.

Фторполимером может являться, например, поливинилиденфторид (PVDF), сополимер этилена с тетрафторэтиленом (ETFE), сополимер этилена с тетрафторэтиленом (ETFE) модифицированный третьим компонентом, например, пропиленом, гексафторпропиленом, винилфторидом или винилиденфторидом (например, тройной сополимер этилена, тетрафторэтилена и гексафторпропилена (EFEP)), сополимер этилена с хлортрифторэтиленом (E-CTFE)), полихлортрифторэтилен (PCTFE), сополимер на основе хлортрифторэтилена, перфторалкилвинилового эфира и тетрафторэтилена (СРТ), сополимер тетрафторэтилена с гексафторпропиленом (FEP) или сополимер тетрафторэтилена с перфторалкилвиниловым эфиром (PFA).

Пригодными являются также сополимеры на основе винилиденфторида, которые содержат до 40% масс. звеньев других мономеров, например, таких как трифторэтилен, хлортрифторэтилен, этилен, пропилен и гексафторпропен.

Полифенилсульфон (PPSU) выпускает под торговым названием Radel®, например, фирма Solvay Advanced Polymers. Полифенилсульфон можно получить путем нуклеофильного замещения 4,4'-дигидроксибифенила и 4,4'-дигидроксидифенилсульфона. Пригодной, в частности, является также смесь полифенилсульфона с фторполимером, например, смесь полифенилсульфона с политетрафторэтиленом (PPSU/PTFE).

Также используемый полиариленэфиркетон содержит структурные единицы формул:

(-Ar-X-) и (-Ar'-Y-),

в которых Ar и Ar' соответственно означают двухвалентный ароматический остаток, предпочтительно 1,4-фенилен, 4,4'-дифенилен, 1,4-нафтилен, 1,5-нафтилен или 2,6-нафтилен. Х означает оттягивающую электроны группу, предпочтительно карбонил или сульфонил, в то время как Y означает другую группу, такую как О, S, CH2, изопропилиден или подобную группу. При этом по меньшей мере 50%, предпочтительно по меньшей мере 70%, особенно предпочтительно по меньшей мере 80% групп Х означают карбонильную группу, в то время как по меньшей мере 50%, предпочтительно по меньшей мере 70%, особенно предпочтительно по меньшей мере 80% групп Y означают кислород.

В предпочтительном варианте 100% групп Х означают карбонильную группу и 100% групп Y означают кислород. В соответствии с данным вариантом полиариленэфиркетон может быть, например, полиэфирэфиркетон ((PEEK) формула I), полиэфиркетон ((РЕК)формула II), полиэфиркетонкетон ((РЕКК) формула III) или полиэфирэфиркетонкетон ((РЕЕКК) формула IV), хотя возможными, очевидно, являются также структуры с другими комбинациями карбонильных групп и атомов кислорода.

Полиариленэфиркетон является частично кристаллическим полимером, температура плавления (Tm) кристаллитов которого, определяемая, например, методом дифференциальной сканирующей калориметрии, по порядку величины в большинстве случаев составляет 300°С или выше.

Полифениленсульфид содержит структурные единицы формулы:

(-C6H4-S-),

из которых предпочтительно состоит по меньшей мере 50% масс., по меньшей мере 70% масс. или по меньшей мере 90% масс. этого полимера. Остальные структурные единицы могут быть такими, как указано выше для полиариленэфиркетона, или могут являться структурными единицами, производными совместно используемых при синтезе трифункциональных или тетрафункциональных агентов разветвления, например, трихлорбензола или тетрахлорбензола. Коммерчески доступным является множество типов полифениленсульфида и соответствующих формовочных масс.

Компоненты смесей полиариленэфиркетона с полифениленсульфидом могут присутствовать в подобных смесях в любом возможном соотношении, от чистого полиариленэфиркетона до чистого полифениленсульфида. В общем случае подобная смесь содержит по меньшей мере 0,01% масс. полиариленэфиркетона, соответственно по меньшей мере 0,01% масс. полифениленсульфида.

Полимерные формовочные массы могут содержать обычные вспомогательные компоненты и добавки, а также при необходимости другие полимеры, к которым в случае полиариленэфиркетона относятся, например, фторполимеры, такие как сополимер тетрафторэтилена с перфторалкилвиниловым эфиром (PFA); полиимид, полиэфиримид, жидкокристаллические полимеры (LCP), например, такие как жидкокристаллические сложные полиэфиры; полисульфон, полиэфирсульфон, полифенилсульфон, полибензимидазол (PBI) или другие стойкие к высоким температурам полимеры; в случае полифениленсульфида, например, сополимеры, соответственно тройные сополимеры этилена с полярными сомономерами, а в случае частично ароматического полиамида алифатический полиамид. Полиамидная формовочная масса может содержать также, например, гидролизный стабилизатор, пластификатор, соответственно модификаторы ударной вязкости. Кроме того, формовочная масса может содержать «внутреннюю» смазку, такую как графит, сульфид молибдена, гескагональный нитрид бора или политетрафторэтилен (PTFE). Содержание базовых полимеров, а также, в предпочтительном варианте, содержание олефинового полимера, полиамида, фторполимера, полифенилсульфона, полиариленэфиркетона, полифениленсульфида, соответственно смеси полиариленэфиркетона с полифениленсульфидом, в формовочной массе составляет по меньшей мере 50% масс., предпочтительно по меньшей мере 60% масс., особенно предпочтительно по меньшей мере 70% масс., в частности, предпочтительно по меньшей мере 80% масс., еще более предпочтительно по меньшей мере 90% масс.

Электрическую проводимость промежуточного слоя b) обеспечивают известными методами, например, путем добавления сажи, электропроводящей сажи, графитового порошка и/или углеродных нанотрубочек (CNT) или соответственно графитовых фибрилл.

Помимо слоев а), b) и с) лента при необходимости может дополнительно включать другие слои, например, слой промотора адгезии между слоями а) и b) и/или слой промотора адгезии между слоями b) и с).

Поперечное сечение ленты может быть, например, прямоугольным или закругленным.

Отдельные слои ленты по ее краям могут находиться в разобщенном состоянии (фиг.1) или слои а) и с) могут быть соединены друг с другом по краям ленты (фиг.2), чтобы подобным образом обеспечить максимальное электрическое изолирование относительно армирующих слоев.

Внедренные в слой b) металлические проводники могут быть подключены к источнику электрического тока. В связи с разностью потенциалов между отдельными проводниками через электропроводящий промежуточный слой течет ток, в связи с чем, указанный слой выполняет функцию резистивного нагрева. Прикладываемое при этом напряжение может быть напряжением постоянного или переменного тока. Для обеспечения отказоустойчивости может быть благоприятным наличие в промежуточном слое b) более двух, например, трех, четырех, пяти или шести внедренных металлических проводников. Металлические проводники должны обладать коррозионной стойкостью по отношению к транспортируемой жидкости и ее компонентам.

Толщина ленты обычно составляет от 0,2 до 5 мм, предпочтительно от 0,4 до 5 мм, особенно предпочтительно от 0,5 до 4 мм. При этом толщина промежуточного слоя b) как правило, составляет от 0,1 до 3 мм, предпочтительно от 0,2 до 2,5 мм, особенно предпочтительно от 0,3 до 2 мм, в то время как толщина обоих наружных слоев а) и с) соответственно, как правило, составляет от 0,05 до 1,5 мм, предпочтительно от 0,1 до 1 мм, особенно предпочтительно от 0,1 до 0,5 мм.

Ширина ленты зависит от диаметра трубы. Ширина ленты обычно находится в примерном диапазоне от 20 до 700 мм, предпочтительно от 30 до 500 мм, особенно предпочтительно от 40 до 300 мм.

Ленту спирально наматывают с натягом на другой внутренний слой, причем намотку можно выполнять встык или внахлестку. В последнем случае после намотки ленту можно сваривать в местах нахлестывания. Сварку можно выполнять нагретым газом, путем контакта с нагревательным элементом, посредством (газового) пламени или электромагнитного излучения ультрафиолетовой, видимой или инфракрасной спектральной области. Для фиксации ленты в принципе достаточно выполнить точечную сварку, однако предпочтительным является непрерывное формирование сплошного сварного шва. Ленту, очевидно, можно сваривать также в зонах перехлестывания по всей поверхности. Для сваривания благоприятно, чтобы размягченная зона формовочной массы в слоях а) и с) была меньше размягченной зоны формовочной массы в слое b).

Для повышения отказоустойчивости можно наматывать также друг около друга или одна над другой несколько лент, каждая из которых снабжена собственным электрическим контуром. Кроме того, гибкая труба может обладать также несколькими подобными слоями намотанной ленты, которые отделены друг от друга армирующим слоем.

Слой намотанной ленты одновременно может выполнять также функцию противоизносного слоя. В соответствии с уровнем техники противоизносные ленты помещают между армирующими слоями из стали с целью предотвращения истирания армирующих слоев. При этом в первую очередь истирается лента. Подобное истирание при необходимости следует учитывать при конструктивном исполнении, чтобы могло быть обеспечено изолирование электропроводящего промежуточного слоя в течение всего срока службы гибкого трубопровода. В связи с этим для слоев а) и с) предпочтительно используют формовочные массы, которые отличаются особенно благоприятными трибологическими свойствами.

В случае если формовочная масса слоя b) содержит сажу, соответственно электропроводящую сажу, при обогреве можно реализовать эффект положительного температурного коэффициента. Подобный эффект позволяет обеспечить имманентную безопасность благодаря ограничению повышения температуры при постоянном напряжении, обусловленному падением проводимости при нагревании. Это позволяет предотвращать тепловое повреждение трубопровода или подлежащей транспортировке среды.

Согласно изобретению ленту можно наматывать также только на определенные участки трубы. Можно придавать электропроводящие свойства тем участкам, которые подлежат целенаправленному нагреванию, а на другие участки вместо этого наматывать, например, обычную противоизносную ленту.

Помимо указанных выше слоев гибкая труба при необходимости может содержать другие слои, например, усиленные в одном направлении или армированные тканью полимерные слои, причем армирование можно осуществлять хорошо проводящими тепло углеродными волокнами или использовать самый внешний слой в качестве теплоизоляции.

Путем реализуемого согласно изобретению нагревания всей трубы или ее отдельных участков можно предотвращать образование осадка. Это позволяет исключать термическое повреждение системы трубопроводов и транспортируемой среды. Техническая реализация изобретения отличается простотой, поскольку не требует использования сложных дополнительных технических элементов и изменения конструкции трубы. Предлагаемую в изобретении трубу можно эффективно нагревать таким образом, что ее можно использовать также при добыче нефти в холодных регионах, например в арктической зоне. Кроме того, предоставляется возможность длительной эксплуатации труб на большой глубине, без охлаждения транспортируемой по ним среды до температур ниже вышеуказанной критической температуры.

Похожие патенты RU2598618C2

название год авторы номер документа
ГИБКАЯ ТРУБА МНОГОСЛОЙНОЙ КОНСТРУКЦИИ, ЕЕ ПРИМЕНЕНИЕ И СПОСОБ ОБОГРЕВА ГИБКОЙ ТРУБЫ 2012
  • Геринг Райнер
  • Дове Андреас
  • Куманн Карл
  • Грун Максимилиан
  • Франош Юрген
RU2597724C2
ТЕРМОПЛАСТИЧНАЯ КОМПОЗИТНАЯ ТРУБА С МНОГОСЛОЙНОЙ ПРОМЕЖУТОЧНОЙ ПРОСЛОЙКОЙ 2018
  • Бергер Ясмин
  • Рис Ханс
  • Франош Юрген
  • Гёринг Райнер
  • Бейер Хорст
RU2714587C2
ТЕРМОПЛАСТИЧНАЯ КОМПОЗИТНАЯ ТРУБА С МНОГОСЛОЙНОЙ ПРОМЕЖУТОЧНОЙ ПРОСЛОЙКОЙ 2017
  • Бергер Ясмин
  • Рис Ханс
  • Франош Юрген
  • Гёринг Райнер
  • Бейер Хорст
RU2709588C2
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕРЖНЯ И ЕГО ПРИМЕНЕНИЕ 2012
  • Геринг Райнер
  • Хартманн Маркус
  • Куманн Карл
  • Кальтхоф Бернфрид
RU2598851C2
ПОЛИМЕРНАЯ ФОРМОВОЧНАЯ МАССА 2009
  • Рихтер Александер
  • Локэмпер Ханс-Гюнтер
RU2516420C2
СПОСОБ ИЗГОТОВЛЕНИЯ ОБОГРЕВАЕМОЙ ТРУБЫ ДЛЯ ТРУБОПРОВОДА, ОБОГРЕВАЕМАЯ ТРУБА ДЛЯ ТРУБОПРОВОДА И ЕЕ ПРИМЕНЕНИЕ 2013
  • Геринг Райнер
  • Бер Михаэль
  • Франош Юрген
  • Вестмайер Йорг
  • Шварцкопф Отфрид
  • Де Беер Даниэль
RU2641412C2
ГИБКАЯ ПОЛИМЕРНАЯ МНОГОСЛОЙНАЯ АРМИРОВАННАЯ ТРУБА 2021
  • Гориловский Мирон Исаакович
  • Шмелёв Александр Юрьевич
  • Самойлов Сергей Васильевич
  • Шаляпин Сергей Валерьевич
  • Филиппов Анатолий Николаевич
RU2805351C1
ПОЛИАМИДНАЯ ФОРМОВОЧНАЯ КОМПОЗИЦИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ МНОГОСЛОЙНОГО КОМБИНИРОВАННОГО МАТЕРИАЛА С ПРИМЕНЕНИЕМ ПОЛИАМИДНОЙ ФОРМОВОЧНОЙ КОМПОЗИЦИИ 2006
  • Дове Андреас
  • Геринг Райнер
  • Беер Михаэль
  • Вурше Роланд
  • Химмельманн Мартин
  • Бауманн Франц-Эрих
  • Куманн Карл
RU2429260C2
ПРИМЕНЕНИЕ КОМПОЗИЦИИ ДЛЯ КОНТАКТА СО СВЕРХКРИТИЧЕСКИМИ СРЕДАМИ 2009
  • Дове Андреас
  • Бойт Райнхард
  • Бауманн Франц-Эрих
RU2543205C2
МЕТАЛЛИЧЕСКАЯ ТРУБА, ЕЕ ПРИМЕНЕНИЕ, ПОЛИАМИДНЫЕ СМЕСИ И ФОРМОВАННАЯ ДЕТАЛЬ ИЗ НИХ 2015
  • Франош Юрген
  • Бауманн Франц-Эрих
  • Байер Хорст
  • Дове Андреас
  • Павлик Андреас
RU2685208C2

Иллюстрации к изобретению RU 2 598 618 C2

Реферат патента 2016 года ГИБКАЯ ТРУБА, СПОСОБ ЕЕ ОБОГРЕВА И ЕЕ ПРИМЕНЕНИЕ ДЛЯ ТРАНСПОРТИРОВКИ СЫРОЙ НЕФТИ

Изобретение относится к области трубопроводной транспортировки нефтепродуктов. Гибкая труба содержит в направлении изнутри наружу следующие слои: внутреннюю обкладку и по меньшей мере один армирующий слой, причем между двумя слоями дополнительно находится другой слой в виде намотанной ленты, причем лента содержит следующие слои: a) первый наружный слой из неэлектропроводящей полимерной формовочной массы, b) промежуточный слой из электропроводящей полимерной формовочной массы, удельное объемное сопротивление которой согласно IEC 60093 составляет от 10-3 до 1010 Ом, причем вдоль ленты в промежуточный слой внедрены по меньшей мере два металлических проводника таким образом, что они не контактируют друг с другом по всей длине, а также c) второй наружный слой из неэлектропроводящей полимерной формовочной массы, причем указанная труба может эффективно обогреваться, в связи с чем ее можно использовать при добыче нефти в холодных регионах. 3 н. и 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 598 618 C2

1. Гибкая труба, которая содержит в направлении изнутри наружу следующие слои:
- внутреннюю обкладку и
- по меньшей мере один армирующий слой,
причем между двумя слоями дополнительно находится другой слой в виде намотанной ленты,
отличающаяся тем, что лента содержит следующие слои:
a) первый наружный слой (1) из неэлектропроводящей полимерной формовочной массы,
b) промежуточный слой (2) из электропроводящей полимерной формовочной массы, удельное объемное сопротивление которой согласно IEC 60093 составляет от 10-3 до 1010 Ом, причем вдоль ленты в промежуточный слой внедрены по меньшей мере два металлических проводника (4) таким образом, что они не контактируют друг с другом по всей длине, а также
c) второй наружный слой (3) из неэлектропроводящей полимерной формовочной массы.

2. Гибкая труба по п.1, отличающаяся тем, что электропроводящая полимерная формовочная масса слоя b) содержит электропроводящую сажу, графитовый порошок и/или графитовые фибриллы.

3. Гибкая труба по п.1, отличающаяся тем, что толщина ленты составляет от 0,2 до 5 мм, причем слой b) обладает толщиной от 0,1 до 3 мм, а оба наружных слоя а) и с) - соответственно толщиной от 0,05 до 1,5 мм.

4. Гибкая труба по одному из предыдущих пунктов, отличающаяся тем, что армирующий слой или соответственно армирующие слои состоят из расположенных в виде спирали стальных проволок, стальных профильных элементов или стальных лент.

5. Применение гибкой трубы по одному из пп.1-4 для транспортировки сырой нефти.

6. Способ обогрева гибкой трубы по одному из пп.1-4, отличающийся тем, что внедренные в промежуточный слой металлические проводники подключают к источнику электрического тока так, что через электропроводящий промежуточный слой течет электрический ток.

Документы, цитированные в отчете о поиске Патент 2016 года RU2598618C2

DE 102008014988 А1, опубл
Пишущая машина для тюркско-арабского шрифта 1922
  • Мадьярова А.
  • Туганов Т.
SU24A1
WO 2008005829 A2, опубл
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
WO 9118231 A1, опубл
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм 1919
  • Кауфман А.К.
SU28A1
WO 1992011487 A1, опубл
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
СПОСОБ ОПРЕДЕЛЕНИЯ МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПАРАФИНОВ В СМЕСИ УГЛЕВОДОРОДОВ С ПОМОЩЬЮ МЕТОДА ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА 2009
  • Шкаликов Николай Викторович
  • Скирда Владимир Дмитриевич
RU2423686C1
Способ обработки медных солей нафтеновых кислот 1923
  • Потоловский М.С.
SU30A1

RU 2 598 618 C2

Авторы

Геринг Райнер

Дове Адреас

Куманн Карл

Грун Максимилиан

Франош Юрген

Даты

2016-09-27Публикация

2012-05-04Подача