СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО ЛОКАТОРА Российский патент 2016 года по МПК G01N29/36 

Описание патента на изобретение RU2599602C1

Изобретение относится к ультразвуковым локационным устройствам, используемым для измерения глубины скважин в горнодобывающей промышленности, судоходстве и других отраслях народного хозяйства.

Известен способ компенсации погрешностей ультразвукового уровнемера (RU 2389982 С1, МПК G01F 23/28 (2006.01), опубл. 20.05.2010), включающий излучение ультразвукового сигнала, его прием, измерение временного интервала между двумя сигналами, его преобразование в цифровой код, измерение не менее трех временных интервалов, в которых мгновенное значение амплитуды принятого ультразвукового сигнала превышает пороговый уровень. По величине порогового значения и изменению длительности этих временных интервалов определяют временную координату начала ответного сигнала и используют ее при расчете расстояния до отражающей поверхности путем умножения скорости распространения ультразвука в контролируемой среде на измеренный временной интервал.

Недостатком этого способа является низкая точность и стабильность измерения, обусловленная изменением формы принятого ультразвукового сигнала при волноводном распространении, вследствие чего длительность измеренных трех временных интервалов может изменяться немонотонно, например длительность третьего временного интервала может оказаться меньше длительности первого временного интервала, или длительности всех измеренных временных интервалов могут оказаться одинаковыми. Это приводит к невозможности определения временной координаты начала принятого ультразвукового сигнала.

Известен способ компенсации погрешностей акустических локационных уровнемеров (RU 2544310 С1, МПК G01N 29/36, опубл. 20.03.2015), выбранный в качестве прототипа, в котором излучение, прием ультразвуковых сигналов и измерение временных интервалов между излученным и принятым ультразвуковым сигналами производят на двух частотах с разными периодами, затем производят сравнение этих временных интервалов и их коррекцию в соответствии с выражением:

,

где Т1 - период колебаний ультразвуковой волны первой частоты,

Т2 - период колебаний ультразвуковой волны второй частоты,

i - номер коррекции,

Δt1 - первый измеренный временной интервал,

Δt2 - второй измеренный временной интервал, полученное значение временного интервала (Δt1-i·T1) используют при определении расстояния до отражающей поверхности.

Недостатком известного способа является низкая точность измерения, обусловленная невозможностью определения фазы срабатывания порогового устройства, которое может изменяться от 0 до π/4.

Задачей изобретения является создание способа, обеспечивающего снижение погрешности измерений при волноводном распространении ультразвуковых сигналов.

Поставленная задача решена за счет того, что способ компенсации погрешности измерения ультразвукового локатора, также как в прототипе, включает излучение, прием ультразвуковых сигналов и измерение временных интервалов между излученным и принятым ультразвуковым сигналами на двух частотах с разными периодами, сравнение этих временных интервалов и их коррекцию в соответствии с выражением:

,

где Т1 - период колебаний ультразвуковой волны первой частоты,

Т2 - период колебаний ультразвуковой волны второй частоты,

i - номер коррекции,

Δt1 - первый измеренный временной интервал,

Δt2 - второй измеренный временной интервал, определение временного интервала Δ t 1 ' = ( Δ t 1 i T 1 ) и расстояния до отражающей поверхности.

Согласно изобретению после приема ультразвукового сигнала первой частоты проводят измерение временного интервала t, в котором мгновенное значение амплитуды принятого сигнала первой частоты превышает пороговый уровень. Определяют корректирующий временной интервал в соответствии с выражением:

t к = ( T 1 2 t ) / 2 ,

где t - временной интервал, в котором мгновенное значение амплитуды принятого сигнала ультразвуковой волны первой частоты превышает пороговый уровень. После получения значения временного интервала Δ t 1 ' = ( Δ t 1 i T 1 ) определяют временную координату начала принятого сигнала ультразвуковой волны первой частоты в соответствии с выражением:

t 0 = Δ t 1 ' t к ,

которую используют для определения расстояния до отражающей поверхности.

За счет измерения временного интервала, в котором мгновенное значение амплитуды принятого ультразвукового сигнала первой частоты превышает пороговый уровень, появилась возможность определения корректирующего временного интервала и последующего определения временной координаты начала принятого ультразвукового сигнала первой частоты, что позволило компенсировать погрешность измерения ультразвукового локатора.

Предложенный способ позволяет определить расстояние до отражающей поверхности с погрешностью не более λ/8, так как срабатывание порогового устройства (компаратора) происходит на первой четверти периода принятого ультразвукового сигнала первой частоты, максимальное значение которого соответствует λ/4, а учет фазы срабатывания порогового устройства позволяет уменьшить погрешность еще в два раза до λ/8.

На фиг. 1 представлена схема устройства для осуществления предлагаемого способа.

На фиг. 2 представлена диаграмма, иллюстрирующая предлагаемый способ.

Устройство, реализующее предлагаемый способ, содержит блок управления 1 (БУ), соединенный с первым 2 (Г1) и вторым 3 (Г2) генераторами (фиг.1). Выход первого генератора 2 (Г1) соединен с первым излучателем 4 (И1), выход второго генератора 3 (Г2) соединен со вторым излучателем 5 (И2). Первый приемник 6 (П1) соединен с первым усилителем 7 (У1), выход которого связан с входом первого порогового устройства 8 (ПУ1). К другому входу первого порогового устройства 8 (ПУ1) подключен источник опорного напряжения 9 (ИОН). Выход первого порогового устройства 8 (ПУ1) подключен к входу первого блока измерения временного интервала 10 (БИВИ1) и к входу первого блока формирования временного интервала 11 (БФВИ1), к другому входу которого подключен блок управления 1 (БУ). Выход первого блока формирования временного интервала 11 (БФВИ1) подключен к входу второго блока измерения временного интервала 12 (БИВИ2), выход которого подключен к блоку управления 1 (БУ). Выход первого блока измерения временного интервала 10 (БИВИ1) подключен к блоку управления 1 (БУ). Второй приемник 13 (П2) соединен со вторым усилителем 14 (У2), выход которого связан с входом второго порогового устройства 15 (ПУ2), к другому входу которого подключен источник опорного напряжения 9 (ИОН). Выход второго порогового устройства 15 (ПУ2) подключен к входу второго блока формирования временного интервала 16 (БФВИ2), к другому входу которого подключен блок управления 1 (БУ). Выход второго блока формирования временного интервала 16 (БФВИ2) подключен к входу третьего блока измерения временного интервала 17 (БИВИ3), выход которого подключен к блоку управления 1 (БУ). Блок управления 1 (БУ) подключен к блоку индикации 18 (БИ).

Блок управления 1 (БУ) может быть выполнен на микроконтроллере ATMEGA16. Генераторы 2 (Г1) и 3 (Г2) могут быть выполнены по схеме с разрядом накопительной емкости на тиристорах типа КУ104Г. Излучатели 4 (И1) и 5 (И2), приемники 6 (П1) и 13 (П2) могут быть изготовлены из любой пьезокерамики, например ЦТС-19. Усилители 7 (У1) и 14 (У2) могут быть выполнены на операционных усилителях, например К544УД2. В качестве пороговых устройств 8 (ПУ1) и 15 (ПУ2) можно использовать компараторы К521СА3. Блоки формирования временного интервала 11 (БФВИ1) и 16 (БФВИ2) могут быть выполнены на стандартных микросхемах К1554ТМ2. Блоки измерения временного интервала 10 (БИВИ1), 12 (БИВИ2) и 17 (БИВИ3) могут быть выполнены на стандартных микросхемах, например К1554ИЕ7. Источник опорного напряжения 9 (ИОН) выбран типовым REF 192 фирмы ANALOG DEVICES в стандартном включении. Блок индикации 18 (БИ) выполнен на семисегментных индикаторах типа DA56-11SRWA.

В качестве примера рассмотрим определение расстояния предлагаемым способом. В трубе длиной 250 см, заполненной водой, были установлены излучатели 4 (И1) и 5 (И2), а также приемники 6 (П1) и 13 (П2). На противоположном конце трубы был закреплен отражатель. Частота ультразвуковых сигналов первого излучателя 4 (И1) и первого приемника 6 (П1) составляла 600 кГц, соответственно длина волны λ1=2,5 мм, а период колебаний Т1=1,67 мкс. Частота ультразвуковых сигналов второго излучателя 5 (И2) и второго приемника 13 (П2) составляла 900 кГц, соответственно длина волны λ2=1,67 мм, а период колебаний Т2=1,11 мкс.

Блок управления 1 (БУ) вырабатывал сигнал запуска для первого генератора 2 (Г1), этим же сигналом первый блок формирования временного интервала 11 (БФВИ1) устанавливался в состояние логической единицы. Первый генератор 2 (Г1) возбуждал первый излучатель 4 (И1), который излучал ультразвуковые сигналы с периодом Т1. Излученный ультразвуковой сигнал распространялся по контролируемой среде и принимался первым приемником 6 (П1), усиливался первым усилителем 7 (У1) и поступал на вход первого порогового устройства 8 (ПУ1). На второй вход первого порогового устройства 8 (ПУ1) подавалось напряжение U1 от источника опорного напряжения 9 (ИОН). Как только напряжение на выходе первого усилителя 7 (У1) превысило напряжение U1, выход первого порогового устройства 8 (ПУ1) переключился в состояние логической 1, которая сбросила первый блок формирования временного интервала 11 (БФВИ1) в состояние логического нуля (точка t1 на фиг.2). Таким образом, на выходе первого блока формирования временного интервала 11 (БФВИ1) получился сигнал, длительность которого равна времени

Δt1=t1-t0,

где t0 - начальный момент времени излучения ультразвукового сигнала.

Этот сигнал поступил во второй блок измерения временного интервала 12 (БИВИ2). Данные о длительности второго временного интервала поступили в блок управления 1 (БУ). Кроме того, логическая 1 на выходе первого порогового устройства 8 (ПУ1) разрешила работу первого блока измерения временного интервала 10 (БИВИ1) (точка t1 на фиг. 2). Как только напряжение на выходе первого усилителя 7 (У1) стало меньше напряжения U1 (точка t3 на фиг. 2), выход первого порогового устройства 8 (ПУ1) переключился в состояние логического 0, который остановил работу первого блока измерения временного интервала 10 (БИВИ1). Данные с первого блока измерения временного интервала 10 (БИВИ1) поступили в блок управления 1 (БУ), который вычислил корректирующее значение:

t к = ( T 1 2 t ) / 2 ,

где T1 - период колебаний ультразвуковой волны первой частоты,

t - временной интервал, в котором мгновенное значение амплитуды принятого ультразвукового сигнала первой частоты превышает пороговый уровень.

Затем блок управления 1 (БУ) выработал сигнал запуска для второго генератора 3 (Г2), этим же сигналом второй блок формирования временного интервала 16 (БФВИ2) установился в состояние логической 1. Второй генератор 3 (Г2) возбудил второй излучатель 5 (И2), который излучил ультразвуковые сигналы с периодом Т2. Излученный ультразвуковой сигнал распространился по той же контролируемой среде и был принят вторым приемником 13 (П2), усилился вторым усилителем 14 (У2) и поступил на вход второго порогового устройства 15 (ПУ2). На второй вход второго порогового устройства 15 (ПУ2) подавалось напряжение U1 от источника опорного напряжения 9 (ИОН). Как только напряжение на выходе второго усилителя 14 (У2) превысило напряжение U1, выход второго порогового устройства 15 (ПУ2) переключился в состояние логической 1, которая сбросила второй блок формирования временного интервала 16 (БФВИ2) в состояние логического 0 (точка t2 на фиг. 2). Таким образом, на выходе второго блока формирования временного интервала 16 (БФВИ2) получился сигнал, длительность которого равна времени

Δt2=t2-t0,

Этот сигнал поступил в третий блок измерения временного интервала 17 (БИВИ2). Данные о длительности третьего временного интервала поступили в блок управления 1 (БУ).

Временные интервалы между излученными и принятыми ультразвуковыми сигналами, измеренные блоками измерения временных интервалов 12 (БИВИ2) и 17 (БИВИ3), имели длительности

Δt1=328,7 мкс,

Δt2=326,8 мкс.

Блок управления 1 (БУ) осуществил первую коррекцию этих временных интервалов в соответствии с выражением:

где T1 - период колебаний ультразвуковой волны первой частоты,

Т2 - период колебаний ультразвуковой волны второй частоты,

i - номер коррекции,

- первый скорректированный временной интервал,

- второй скорректированный временной интервал.

После этого блок управления 1 (БУ) осуществил сравнение результатов коррекции:

После коррекции по формулам (1) и (2) получили следующий набор значений:

.

В результате получили значение, превышающее четверть периода ультразвуковых колебаний.

Блок управления 1 (БУ) осуществил вторую коррекцию этих временных интервалов:

После второй коррекции (i=2) получили значение, превышающее четверть периода ультразвуковых колебаний.

Блок управления 1 (БУ) осуществил третью коррекцию этих временных интервалов:

.

После третьей коррекции (i=3) получили разность времен первого и второго интервала, которая меньше четверти периода ультразвуковых сигналов первой частоты.

Временной интервал, в котором мгновенное значение амплитуды принятого ультразвукового сигнала первой частоты превышает пороговый уровень, измеренный блоком измерения временного интервала 11 (БИВИ1), имел длительность:

t=0,4 мкс.

Затем блок управления и индикации 1 (БУ) определил длительность корректирующего временного интервала в соответствии с выражением:

.

После этого блок управления 1 (БУ) определил временную координату начала принятого сигнала ультразвуковой волны первой частоты:

Используя эту временную координату, блок управления 1 (БУ) определил расстояние до отражателя h и передал данные в блок индикации 18 (БИ) для отображения.

h=С·t0/2=1500·333,48*10-6/2=250,11 см,

где С - скорость распространения ультразвука в воде.

Ошибка измерения уровня Δh составила:

Δh=250-250,11=0,11 мм.

Таким образом, экспериментально установлено, что погрешность измерения расстояния до отражателя составила λ/22.

Похожие патенты RU2599602C1

название год авторы номер документа
УСТРОЙСТВО КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО ЛОКАТОРА 2015
  • Солдатов Алексей Иванович
  • Шульгина Юлия Викторовна
  • Солдатов Андрей Алексеевич
  • Сорокин Павел Владимирович
  • Солдатова Мария Алексеевна
  • Шульгин Евгений Михайлович
RU2596907C1
СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО ЛОКАТОРА 2019
  • Солдатов Алексей Иванович
  • Солдатов Андрей Алексеевич
  • Солдатова Екатерина Сергеевна
  • Шульгина Юлия Викторовна
  • Костина Мария Алексеевна
  • Сорокин Павел Владимирович
  • Солдатов Дмитрий Алексеевич
RU2703834C1
СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО ЛОКАТОРА 2013
  • Солдатов Алексей Иванович
  • Шульгина Юлия Викторовна
  • Солдатов Андрей Алексеевич
  • Дичев Никита Владимирович
RU2544310C1
УСТРОЙСТВО КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО СКВАЖИННОГО ГЛУБИНОМЕРА 2013
  • Солдатов Алексей Иванович
  • Шульгина Юлия Викторовна
  • Солдатов Андрей Алексеевич
  • Дичев Никита Владимирович
RU2544311C1
УСТРОЙСТВО КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО ЛОКАТОРА 2019
  • Солдатов Алексей Иванович
  • Солдатов Андрей Алексеевич
  • Солдатова Екатерина Сергеевна
  • Шульгина Юлия Викторовна
  • Костина Мария Алексеевна
  • Сорокин Павел Владимирович
  • Солдатов Дмитрий Алексеевич
RU2703836C1
СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО УРОВНЕМЕРА 2008
  • Солдатов Алексей Иванович
RU2380659C1
УСТРОЙСТВО АВАРИЙНОЙ ПОЖАРНОЙ СИГНАЛИЗАЦИИ 2011
  • Ильин Олег Петрович
RU2470373C1
СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО УРОВНЕМЕРА 2011
  • Солдатов Алексей Иванович
  • Селезнёв Антон Иванович
  • Солдатов Андрей Алексеевич
  • Фикс Иван Иванович
RU2471158C1
СПОСОБ ОБНАРУЖЕНИЯ ОБЪЕКТА НА МАЛЫХ ДИСТАНЦИЯХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Лебедько Евгений Георгиевич
  • Серикова Мария Геннадьевна
RU2549210C2
УСТРОЙСТВО КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО УРОВНЕМЕРА 2011
  • Солдатов Алексей Иванович
  • Селезнев Антон Иванович
  • Солдатов Андрей Алексеевич
  • Крёнинг Ханс Михаель Вильгельм Адольф
RU2470267C1

Иллюстрации к изобретению RU 2 599 602 C1

Реферат патента 2016 года СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО ЛОКАТОРА

Использование: для измерения глубины скважин посредством ультразвукового локационного устройства. Сущность изобретения заключается в том, что способ компенсации погрешности измерения ультразвукового локатора включает излучение, прием ультразвуковых сигналов и измерение временных интервалов между излученным и принятым ультразвуковыми сигналами на двух частотах с разными периодами с последующей их коррекцией. Дополнительно проводят измерение временного интервала, в котором мгновенное значение амплитуды принятого ультразвукового сигнала первой частоты превышает пороговый уровень, и по длительности этого временного интервала определяют корректирующий временной интервал, который используют для определения временной координаты начала принятого ультразвукового сигнала первой частоты и последующего определения расстояния до отражающей поверхности путем умножения скорости распространения ультразвука в контролируемой среде на половину этого полученного временного интервала. Технический результат: снижение погрешности измерений при волноводном распространении ультразвуковых сигналов. 2 ил.

Формула изобретения RU 2 599 602 C1

Способ компенсации погрешности измерения ультразвукового локатора, при котором излучение, прием ультразвуковых сигналов и измерение временных интервалов между излученным и принятым ультразвуковыми сигналами производят на двух частотах с разными периодами, производят сравнение этих временных интервалов и их коррекцию в соответствии с выражением:
,
где T1 - период колебаний ультразвуковой волны первой частоты,
Т2 - период колебаний ультразвуковой волны второй частоты,
i - номер коррекции,
Δti - первый измеренный временной интервал,
Δt2 - второй измеренный временной интервал, определяют значение временного интервала Δ t 1 ' = ( Δ t 1 i T 1 ) и расстояние до отражающей поверхности, отличающийся тем, что после приема ультразвукового сигнала первой частоты, проводят измерение временного интервала t, в котором мгновенное значение амплитуды принятого сигнала первой частоты превышает пороговый уровень, и определяют корректирующий временной интервал в соответствии с выражением:
t к = ( T 1 2 t ) / 2 ,
где t - временной интервал, в котором мгновенное значение амплитуды принятого сигнала ультразвуковой волны первой частоты превышает пороговый уровень, а после получения значения временного интервала Δ t 1 ' = ( Δ t 1 i T 1 ) определяют временную координату начала принятого сигнала ультразвуковой волны первой частоты в соответствии с выражением:
t 0 = Δ t 1 ' t к ,
которую используют для определения расстояния до отражающей поверхности.

Документы, цитированные в отчете о поиске Патент 2016 года RU2599602C1

СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО ЛОКАТОРА 2013
  • Солдатов Алексей Иванович
  • Шульгина Юлия Викторовна
  • Солдатов Андрей Алексеевич
  • Дичев Никита Владимирович
RU2544310C1
СПОСОБ КОМПЕНСАЦИИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ УЛЬТРАЗВУКОВОГО УРОВНЕМЕРА 2009
  • Солдатов Алексей Иванович
  • Цехановский Сергей Александрович
  • Сорокин Павел Владимирович
  • Макаров Виктор Степанович
RU2389981C1
US 4467653A, 28.08.1984
US 20120310093A1, 06.12.2012 ;.

RU 2 599 602 C1

Авторы

Солдатов Алексей Иванович

Шульгина Юлия Викторовна

Солдатов Андрей Алексеевич

Сорокин Павел Владимирович

Солдатова Мария Алексеевна

Даты

2016-10-10Публикация

2015-06-15Подача