СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СПАЗМОЛИТИЧЕСКИМ ДЕЙСТВИЕМ, В КАРРАГИНАНЕ Российский патент 2016 года по МПК A61K36/84 A61K47/36 A61K9/51 B82B1/00 

Описание патента на изобретение RU2600890C1

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В патенте 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В патенте 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в патенте 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения нанокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, отличающимйся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - настойка валерьяны.

Отличительной особенностью предлагаемого метода является получение нанокапсул с использованием каррагинана в качестве оболочки и настойки валерьяны, обладающей спазмолитическим действием, - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул лекарственных растений, обладающих спазмолитическим действием.

ПРИМЕР 1

Получение нанокапсул настойки валерьяны, соотношение ядро : оболочка 1:3

10 мл настойки валерьяны добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 3 г указанного полимера, в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2

Получение нанокапсул настойки валерьяны, соотношение ядро : оболочка 1:1

10 мл настойки валерьяны добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г указанного полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3

Получение нанокапсул настойки валерьяны, соотношение ядро : оболочка 3:1

30 мл настойки валерьяны добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г указанного полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4

Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Похожие патенты RU2600890C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СЕДАТИВНЫМ ДЕЙСТВИЕМ В КАРРАГИНАНЕ 2015
  • Кролевец Александр Александрович
RU2605273C1
Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием в конжаковой камеди 2015
  • Кролевец Александр Александрович
RU2611366C2
Способ получения нанокапсул лекарственных растений, обладающих седативным действием 2016
  • Кролевец Александр Александрович
RU2631479C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СПАЗМОЛИТИЧЕСКИМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2596476C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СЕДАТИВНЫМ ДЕЙСТВИЕМ, В АГАР-АГАРЕ 2015
  • Кролевец Александр Александрович
RU2605613C1
Способ получения нанокапсул лекарственных растений, обладающих седативным действием 2015
  • Кролевец Александр Александрович
RU2613761C2
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СЕДАТИВНЫМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2597151C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СПАЗМОЛИТИЧЕСКИМ ДЕЙСТВИЕМ 2015
  • Кролевец Александр Александрович
RU2605594C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ КАРДИОТОНИЧЕСКИМ ДЕЙСТВИЕМ В КАРРАГИНАНЕ 2015
  • Кролевец Александр Александрович
RU2599842C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ ИММУНОСТИМУЛИРУЮЩИМ ДЕЙСТВИЕМ В КАРРАГИНАНЕ 2015
  • Кролевец Александр Александрович
RU2602168C1

Иллюстрации к изобретению RU 2 600 890 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, ОБЛАДАЮЩИХ СПАЗМОЛИТИЧЕСКИМ ДЕЙСТВИЕМ, В КАРРАГИНАНЕ

Изобретение относится к области фармацевтики. Описан способ получения нанокапсул лекарственных растений. В качестве оболочки нанокапсул используют каррагинан. Согласно способу по изобретению 10 мл настойки валерианы добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г каррагинана, в присутствии препарата Е472с и перемешивают. Полученную суспензию нанокапсул отфильтровывают и сушат. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при их получении (увеличение выхода по массе). 1 ил., 4 пр.

Формула изобретения RU 2 600 890 C1

Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, характеризующийся тем, что 10 мл настойки валерьяны добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г каррагинана, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2016 года RU2600890C1

СОЛОДОВНИК В
Д
"Микрокапсулирование",-М.:Химия, 1980.-216стр., стр.136-137
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ ГРУППЫ ЦЕФАЛОСПОРИНОВ В ИНТЕРФЕРОНЕ 2012
  • Быковская Екатерина Евгеньевна
  • Кролевец Александр Александрович
RU2500404C2
US 20070267287 А1, 22.11.2007
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
Замкнутая плавучая погружаемая перемычка для возведения подводных частей гидротехнических сооружений 1928
  • Епимахов М.Ф.
SU13435A1
СЕДАТИВНОЕ И СПАЗМОЛИТИЧЕСКОЕ СРЕДСТВО 2014
  • Кузнецова Ольга Павловна
  • Сакварелидзе Сергей Нодарович
RU2535019C1
WO 2009085952 А1, 09.07.2009.

RU 2 600 890 C1

Авторы

Кролевец Александр Александрович

Даты

2016-10-27Публикация

2015-06-22Подача