СПОСОБ СТРУКТУРИРОВАНИЯ ЗАШУМЛЕННЫХ ОПТИЧЕСКИХ СИГНАЛОВ Российский патент 2016 года по МПК H04B10/00 

Описание патента на изобретение RU2601438C2

Изобретение относится к способам структурирования зашумленных оптических сигналов и может быть использовано для оптических приемников с памятью при приеме сигналов с малой величиной отношения сигнал/шум.

Известен способ прямого детектирования сигналов (см. рис. 1.1 стр. 12 из книги Э.А. Шевцова, М.Е. Белкина «Фотоприемные устройства волоконно-оптических систем передачи»), который состоит в приеме оптических сигналов фотодиодом через оптический соединитель. После этого оптические сигналы преобразуются в электрические сигналы, которые усиливаются с помощью предварительного и главного усилителей, фильтруются фильтром и поступают на цифровое устройство. Цифровое устройство сравнивает входные электрические сигналы с заранее заданным порогом. В случае превышения сигнала порога формируется выходной сигнал верхнего уровня, в противном случае формируется выходной сигнал нижнего уровня. Способ является наиболее близким к заявляемому способу по решаемой задаче и поэтому выбран в качестве прототипа.

Недостатками вышеуказанного способа являются:

- невозможность работы при низких отношениях сигнал/шум (менее 6);

- потенциально низкий коэффициент ошибок при малых отношениях сигнал/шум.

Решаемой технической задачей является создание способа структурирования зашумленных оптических сигналов с повышенной достоверностью.

Достигаемым техническим результатом является обеспечение приема оптических сигналов при малых отношениях сигнал/шум (менее 6) и повышение коэффициента ошибок.

Для достижения технического результата в способе структурирования зашумленных оптических сигналов, заключающемся в их приеме, преобразовании в электрические сигналы, усилении и фильтрации, новым является то, что при аналого-цифровом преобразовании формируют выборку цифровых отсчетов Yi объемом Н, запоминают ее и по значениям цифровых отсчетов строят огибающую линию, после чего осуществляют вычисление среднего выборочного значения Yo по формуле:

и среднего энергетического значения выборки по формуле:

по которому строят нулевую линию, далее определяют точки пересечения огибающей цифровой выборки с нулевой линией и вычисляют средние значения амплитуды выборки положительной +Acp и отрицательной -Acp полярности по формуле:

где j - номер тактового интервала, a Aj - средние значения амплитуды в пределах j-того тактового интервала, которое определяется по формуле:

где h - количество отсчетов в пределах тактового интервала, полученное значение амплитуды Aj в j-том тактовом интервале сравнивают со средним значением амплитуды выборки Acp и при условии | A j | < | A c p | принимают, что переход перед этим тактовым интервалом ложный, далее на каждом j-том тактовом интервале вычисляют энергию Фj по формуле:

значения полученных энергий соседних тактовых интервалов сравнивают, если переход считают истинным, если переход считают ложным, из полученных переходов формируют структурированную выходную цифровую последовательность.

Новая совокупность существенных признаков позволяет повысить достоверность при приеме зашумленных сигналов.

На фиг. 1 представлена структурная схема устройства, реализующего заявляемый способ.

На фиг. 2 представлена блок-схема алгоритма заявляемого способа.

На фиг. 3 представлены расчетная вероятность ошибки Рош для прямого детектирования и экспериментально полученные коэффициенты ошибки BER в зависимости от отношения сигнал/шум q входных оптических сигналов со скоростями передачи 125 Мбит/с и 1,25 Гбит/с для заявляемого способа.

Заявляемый способ может быть реализован в устройстве по структурной схеме (фиг. 1). Зашумленные оптические сигналы поступают на оптико-электронный преобразователь 1, который состоит из фото детектора 2, усилителя фототока 3 и усилителя напряжения 4. С выхода оптико-электронного преобразователя 1 электрические сигналы поступают на вход цифрового записывающего устройства 5. На входе устройства 5 установлен аналого-цифровой преобразователь 6, который из входного аналогового сигнала формирует цифровую последовательность с периодом дискретизации, которая задается тактовым генератором 7. Период дискретизации АЦП t выбирается из условия (в соответствии с теоремой Котельникова-Найквиста):

где τ - длительность тактового интервала исходной цифровой последовательности.

Сформированная АЦП выборка цифровых отсчетов Yi объемом Н записывается в запоминающее устройство 8. Полученная выборка считывается и обрабатывается устройством обработки 9, которое состоит из запоминающего устройства 10 и арифметико-логического устройства (АЛУ) 11. Первоначально с помощью АЛУ вычисляется среднее выборочное значение Yo всей выборки объемом Н по формуле:

и ее среднее энергетическое значение Ycp по формуле:

Полученное Ycp принимается за нулевую линию для полученной выборки. На следующем этапе определяются точки пересечения огибающей цифровой выборки с нулевой линией. Во всех современных стандартах передачи волоконно-оптических систем (ВОСП) единичным цифровым сигналом является перепад напряжения с одного уровня на другой. Для каждого стандарта известна длительность тактового интервала и его допуск. Например, тактовый интервал при скорости передачи 1,25 Гбит/с составляет 0,8 нс, а допуск, определяемый дрожанием фронта (jitter), составляет ±0,16 нс. Фиксируются все полученные переходы через нулевую линию. С учетом того, что полоса частот входных сигналов примерно в два раза ниже тактовой частоты, пересечений на расстоянии менее 0,64 нс быть не может. Поэтому требуется определить: какие из полученных переходов являются истинными, а какие - ложными.

Для этого с помощью АЛУ вычисляются средние значения амплитуды выборки положительной +Аср и отрицательной - Аср полярности по отношению к нулевой линии (фиг 2):

где j - тактовый интервал;

Aj - средние значения амплитуды в пределах j, которое определяется по формуле:

где h - количество отсчетов в пределах тактового интервала h=τ/t;

j - номер тактового интервала.

Полученное значение амплитуды реализации сигнала Aj в каждом тактовом интервале сравниваются со средним значением амплитуды выборки Аср (с учетом полярности). В случае, если | A j | < | A c p | , то считается, что переход перед этим тактовым интервалом ложный. Далее проводится проверка энергетического наполнения соседних тактов, между которыми произошел переход. Для этого на каждом тактовом интервале вычисляется энергия Фj по формуле:

По полученным данным вычисляется абсолютная величина разности между значениями энергии на соседних тактовых интервалах и принимается решение об истинности (ложности) перехода по критерию:

- если то переход считается истинным;

- если то переход считается ложным.

Далее в соответствии с правилами кодирования информации на выходе АЛУ формируется цифровая последовательность логических нулей и единиц.

Для подтверждения работоспособности заявляемого способа был собран макет. В качестве оптико-электронного преобразователя использовалось устройство LeCroy OE695G. Для записи аналого-цифрового преобразования и записывающего устройства использовался цифровой осциллограф LeCroy WaveMaster 820Zi. Для дальнейших вычислений использовалась ПЭВМ с программой на языке С++, реализующей заявляемый способ.

На фиг. 3 представлены расчетное значение вероятности ошибки для прямого детектирования и измеренные экспериментально коэффициенты ошибок BER для скоростей передачи 125 МГц (Fast Ethernet) и 1,25 ГГц (Gigabit Ethernet) при структурировании. Из фиг. 3 видно, что коэффициент ошибки BER для заявляемого способа уменьшается до 5 раз по сравнению с вероятностью ошибки для прямого детектирования.

Похожие патенты RU2601438C2

название год авторы номер документа
СПОСОБ ПОВЫШЕНИЯ ВЕРОЯТНОСТИ ОБНАРУЖЕНИЯ ВЫВОДА ИЗЛУЧЕНИЯ ИЗ ОПТИЧЕСКОГО ВОЛОКНА 2006
  • Шубин Владимир Владимирович
  • Овечкин Сергей Иванович
  • Ивченко Сергей Николаевич
RU2349039C2
СПОСОБ ОБНАРУЖЕНИЯ ВЫВОДА ИЗЛУЧЕНИЯ С БОКОВОЙ ПОВЕРХНОСТИ ОПТИЧЕСКОГО ВОЛОКНА 2006
  • Шубин Владимир Владимирович
RU2350018C2
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ И УСТРАНЕНИЯ АНОМАЛЬНЫХ ИЗМЕРЕНИЙ ПРИ ФИКСИРОВАННОМ ЗНАЧЕНИИ ВЕРОЯТНОСТИ ЛОЖНОЙ ТРЕВОГИ 2007
  • Марчук Владимир Иванович
  • Шерстобитов Александр Иванович
  • Воронин Вячеслав Владимирович
  • Токарева Светлана Викторовна
  • Семенищев Евгений Александрович
RU2361268C1
СПОСОБ УСТРАНЕНИЯ ЛОЖНЫХ СРАБАТЫВАНИЙ ПРИ ВКЛЮЧЕНИИ ЗАЩИЩЕННЫХ ВОЛОКОННО-ОПТИЧЕСКИХ СИСТЕМ 2006
  • Шубин Владимир Владимирович
  • Овечкин Сергей Иванович
RU2350019C2
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ УЗКОПОЛОСНОГО СИГНАЛА 2009
  • Беринцев Алексей Валентинович
  • Черторийский Алексей Аркадьевич
RU2442178C2
УСТРОЙСТВО ОБНАРУЖЕНИЯ И УСТРАНЕНИЯ АНОМАЛЬНЫХ ИЗМЕРЕНИЙ 2016
  • Марчук Владимир Иванович
  • Воронин Вячеслав Владимирович
  • Токарева Светлана Викторовна
  • Семенищев Евгений Александрович
  • Франц Владимир Александрович
  • Гапон Николай Валерьевич
  • Сизякин Роман Алексеевич
RU2616568C1
Цифровой панарамный измеритель частоты 1982
  • Пискорж Владимир Викторович
  • Долженков Николай Васильевич
  • Чумаченко Анатолий Александрович
  • Шульгин Вячеслав Иванович
SU1048420A1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ВАЛА АВИАЦИОННОГО ДВИГАТЕЛЯ С УЧЕТОМ ИЗМЕРЕНИЯ ШУМА 2018
  • Джеласси, Седрик
  • Говри, Жак Поль Мишель
  • Шилен, Жан-Франсуа Жан-Поль Клеман
RU2764242C2
УСТРОЙСТВО И СПОСОБ ПРИЕМА ОПТИЧЕСКОГО СИГНАЛА, ОТРАЖЕННОГО ОТ ЗОНДИРУЕМОГО ОБЪЕКТА 2021
  • Имшенецкий Владимир Владиславович
RU2778546C1
СПОСОБ ОБНАРУЖЕНИЯ АНОМАЛЬНЫХ ИЗМЕРЕНИЙ БЕЗ ОЦЕНКИ ФУНКЦИИ ТРЕНДА И УСТРОЙСТВО, ЕГО РЕАЛИЗУЮЩЕЕ 2005
  • Марчук Владимир Иванович
  • Шерстобитов Александр Иванович
  • Воронин Вячеслав Владимирович
  • Токарева Светлана Викторовна
RU2302655C1

Иллюстрации к изобретению RU 2 601 438 C2

Реферат патента 2016 года СПОСОБ СТРУКТУРИРОВАНИЯ ЗАШУМЛЕННЫХ ОПТИЧЕСКИХ СИГНАЛОВ

Изобретение относится к приемникам оптических сигналов и может быть использовано для восстановления кодовой комбинации из зашумленных оптических сигналов. Способ восстановления кодовой комбинации из зашумленных цифровых оптических сигналов, заключающийся в их приеме, преобразовании в электрические сигналы, усилении и фильтрации, отличается тем, что при аналого-цифровом преобразовании формируют и запоминают выборку цифровых отсчетов Yi объемом Н, с помощью арифметического логического устройства вычисляют среднее выборочное значение по формуле:

и среднее энергетическое значение по формуле:

,

которое принимают за нулевую линию, далее определяют и запоминают все точки пересечения цифровых отсчетов выборки с нулевой линией, далее вычисляют средние значения амплитуды выборки положительной +Аср и отрицательной -Аср полярности по формуле:

где j - номер интервала от точки пересечения цифровых отсчетов с нулевой линией до следующего пересечения, a Aj - средние значения амплитуды в пределах j-того интервала, которое определяют по формуле:

,

где h - количество отсчетов в пределах j-того интервала, полученное значение амплитуды Aj в j-том интервале сравнивают со средним значением амплитуды выборки Аср и при условии |Aj|<|Аср| принимают, что переход перед этим интервалом ложный, далее на каждом j-том интервале вычисляют энергию Фj по формуле:

,

значения полученных энергий соседних интервалов сравнивают, если |Фjj-1|≥4Y2срh, переход считают истинным, если |Фjj-1|<4Y2срh, переход считают ложным, в соответствии с правилами кодирования информации арифметическое логическое устройство формирует цифровую последовательность логических нулей и единиц.. Достигаемым техническим результатом является обеспечение приема оптических сигналов при малых отношениях сигнал/шум (менее 6) и повышение коэффициента ошибок. 3 ил.

Формула изобретения RU 2 601 438 C2

Способ восстановления кодовой комбинации из зашумленных цифровых оптических сигналов, заключающийся в их приеме, преобразовании в электрические сигналы, усилении и фильтрации, отличающийся тем, что при аналого-цифровом преобразовании формируют и запоминают выборку цифровых отсчетов Yi объемом Н, с помощью арифметического логического устройства вычисляют среднее выборочное значение по формуле:

и среднее энергетическое значение по формуле:
,
которое принимают за нулевую линию, далее определяют и запоминают все точки пересечения цифровых отсчетов выборки с нулевой линией, далее вычисляют средние значения амплитуды выборки положительной +Аср и отрицательной -Аср полярности по формуле:

где j - номер интервала от точки пересечения цифровых отсчетов с нулевой линией до следующего пересечения, a Aj - средние значения амплитуды в пределах j-того интервала, которое определяют по формуле:
,
где h - количество отсчетов в пределах j-того интервала, полученное значение амплитуды Aj в j-том интервале сравнивают со средним значением амплитуды выборки Аср и при условии |Aj|<|Аср| принимают, что переход перед этим интервалом ложный, далее на каждом j-том интервале вычисляют энергию Фj по формуле:
,
значения полученных энергий соседних интервалов сравнивают,
если |Фjj-1|≥4Y2срh, переход считают истинным, если |Фjj-1|<4Y2срh, переход считают ложным, в соответствии с правилами кодирования информации арифметическое логическое устройство формирует цифровую последовательность логических нулей и единиц.

Документы, цитированные в отчете о поиске Патент 2016 года RU2601438C2

ШЕВЦОВ Э
А и др Фотоприемные устройства волоконно-оптических систем передачи
Пуговица для прикрепления ее к материи без пришивки 1921
  • Несмеянов А.Д.
SU1992A1
ПРИЕМО-ПЕРЕДАЮЩИЙ БЛОК ВОЛОКОННО-ОПТИЧЕСКОЙ СИСТЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ 2003
  • Шубин В.В.
  • Овечкин С.И.
  • Ивченко С.Н.
RU2239286C1
СПОСОБ АВТОМАТИЧЕСКОГО ОБНАРУЖЕНИЯ СИГНАЛОВ 2011
  • Дворников Сергей Викторович
  • Дворников Александр Сергеевич
  • Егоров Сергей Александрович
  • Казаков Евгений Валерьевич
  • Мандрик Игорь Витальевич
  • Малых Дмитрий Олегович
  • Устинов Андрей Александрович
  • Чихонадских Александр Павлович
RU2473169C1
Способ приготовления безводной массы для заделки выпускных отверстий металлургических агрегатов 1989
  • Слепцов Жорж Ефимович
  • Горобцов Вячеслав Михайлович
  • Фуфаев Геннадий Дмитриевич
  • Вакулин Владимир Николаевич
  • Беляков Владимир Николаевич
  • Камендов Вадим Васильевич
  • Иванцов Виталий Иванович
  • Печеркин Александр Михайлович
SU1675282A1
US 20040105687 A1,03.06.2004 .

RU 2 601 438 C2

Авторы

Нарышкина Ольга Николаевна

Светиков Александр Викторович

Шубин Владимир Владимирович

Даты

2016-11-10Публикация

2015-03-19Подача