Изобретение относится к медицине, а именно к хирургии позвоночника, и может быть использовано для хирургического лечения воспалительных (туберкулез, остеомиелит) и онкологических заболеваний кости.
Известно, что хирургическое лечение воспалительных и онкологических заболеваний кости связано с тяжелыми операциями, так как для лечения позвоночника основными задачами операций являются:
- восстановление опорной функции позвоночника,
- восстановление анатомической целостности позвонков,
- санация воспалительного или онкологического очага,
- декомпенсация и восстановление функции спинного мозга.
В послеоперационном периоде необходимо реализовать:
- подведение противовоспалительных, антибактериальных, противоопухолевых, иммуномодулирующих лекарственных средств в зону поражения для окончательной ликвидации инфекционного или онкологического процесса,
- контроль правильной фиксации имплантата в замещенном костном дефекте,
- быстрое формирование новообразованной костной ткани на поверхности и в порах имплантата и формирование блока «имплантат-кость».
Известные методы лечения решают отдельные из перечисленных выше задач.
Так, предложена радикально-восстановительная декомпрессивная операция, при которой дефект позвоночника, образовавшийся после резекции или некрэктомии пораженных туберкулезом позвонков, замещают аутотрасплантатом из ребра, внедренным своими концами в зарубки, сделанные в телах соседних позвонков (Гарбуз А.Е. Реконструктивная хирургия позвоночника при распространенных формах туберкулезного спондилита и их последствия: Автореф. дисс. … докт. мед. наук, Л. 1988).
Применяемый аутотрасплантат решает задачу восстановления опорной функции позвоночника, но характеризуется недостаточной прочностью, а также возможной резорбцией в послеоперационный период.
Для повышения стабилизирующих и прочностных функций опорно-двигательного аппарата интенсивно используются имплантаты из титана и его сплавов (Пинчук Л.С., Николаев В.И., Цветкова Е.А. Эндопротезирование суставов: технические и медико-биологические аспекты. - Гомель: ИММС НАНБ, 2003). Однако при их применении не происходит врастание костной ткани в имплантат, а формируется плотный рубец вокруг имплантата.
Общим недостатком перечисленных и подобных им хирургических мероприятий является то, что подведение лекарственных средств в зону поражения в послеоперационный период возможно лишь через специально вводимые катетеры и ирригаторы, что усложняет операцию и послеоперационную терапию.
Наиболее близким по технической сущности к заявляемому устройству является имплантат, описанный в Патенте РФ №2199978. Такой имплантат имеет основу, которая выполнена из углерод-углеродного композиционного материала, в виде прямоугольной призмы с основанием в виде креста и снабжена по меньшей мере одним сквозным каналом диаметром не менее 5 мм, расположенным параллельно основанию и заполненным лекарственным средством. Применение такого имплантата решает не только задачу восстановления опорной функции позвоночника и декомпрессию спинного мозга, но и задачу послеоперационного подведения лекарственного средства непосредственно в зону поражения для ликвидации инфекционного процесса.
Недостатком известного технического решения является очень низкая рентгеноконтрастность основы имплантата - он плохо виден на рентгеновских снимках. Это затрудняет ведение операций с использованием приборов компьютерной томографии, а самое главное - наблюдение за пациентом в послеоперационный период методами рентгеновской диагностики. Кроме того, известный имплантат не обладает остеоиндуктивными свойствами, т.е. не ускоряет формирование новообразованной костной ткани на поверхности имплантата.
Заявляемое изобретение направлено на создание имплантата, позволяющего упростить технологию и повысить надежность эндопротезирования при хирургическом лечении костных болезней, а также ускорить формирование костной ткани на поверхности имплантата и восстановление опороспособности.
Технический результат достигается за счет того, что имплантат для хирургического лечения воспалительных и опухолевых болезней кости включает в себя основу из углерод-углеродного материала, снабженную по меньшей мере одним каналом, заполненным лекарственным средством, а основа выполнена из углерод-углеродного материала, содержащего пироуглеродную матрицу и многонаправленный армирующий каркас из стержней, сформованных из углеродных волокон, расположенных вдоль оси стержней, причем некоторые заранее выбранные стержни, стержни одного, нескольких или всех направлений армирования, входящие в армирующий каркас, содержат в своем составе одно или несколько химических соединений из группы: оксид алюминия, карбид кремния, ортофосфат кальция, пирофосфат кальция, оксид титана, карбид титана, оксид циркония, карбид циркония, оксид ниобия, карбид ниобия, оксид гафния, карбид гафния, оксид тантала, карбид тантала, карбид вольфрама в количестве 0,1-10% от массы стержня, а поверхность имплантата покрыта слоем богатой тромбоцитами плазмы крови и/или слоем гидроксиапатита.
При содержании в стержнях армирующей основы химических соединений в количестве менее 0,1% масс. протез тела позвонков имеет низкую рентгеноконтрастность. Введение в стержни химических соединений в количестве более 10% масс. нецелесообразно, т.к. это усложняет технологию изготовления стержней и протеза в целом.
Предпочтительно, чтобы слой богатой тромбоцитами плазмы крови составлял 0,02-0,3 г на 1 см2 поверхности имплантата, а слой гидроксиапатита - 0,02-0,5 г на 1 см2 поверхности имплантата. Содержание богатой тромбоцитами плазмы крови и гидроксиапатита менее 0,02 г на 1 см2 поверхности имплантата слишком мало для эффективного ускорения формирования костной ткани на поверхности имплантата. Содержание богатой тромбоцитами плазмы крови более 0,3 г на 1 см2 поверхности имплантата и гидроксиапатита более 0,5 г на 1 см2 поверхности имплантата нетехнологично, т.к. слой оказывается в этом случае довольно большой толщины, что затрудняет проведение хирургической операции.
Сущность изобретения состоит в следующем.
Имплантат для хирургического лечения воспалительных и опухолевых болезней кости в данном техническом решении состоит из основы, выполненной из углерод-углеродного композиционного материала, снабженной одним или несколькими сквозными или глухими каналами, заполненным лекарственным средством, и покрыта слоем богатой тромбоцитами плазмы крови и/или слоем гидроксиапатита.
Основа имплантата выполнена из композита, имеющего многонаправленный армирующий каркас из стержней, сформованных из углеродных волокон, расположенных вдоль оси стержней, связанных в единый композит пироуглеродной матрицей. В армирующем каркасе некоторые заранее выбранные стержни, стержни одного, нескольких или всех направлений армирования, входящие в армирующий каркас, кроме углеродных волокон содержат в своем составе одно или несколько химических соединений из группы: оксид алюминия, карбид кремния, ортофосфат кальция, пирофосфат кальция, оксид титана, карбид титана, оксид циркония, карбид циркония, оксид ниобия, карбид ниобия, оксид гафния, карбид гафния, оксид тантала, карбид тантала, карбид вольфрама в количестве 0,1-10% от массы стержня.
Материал основы имплантата обладает не только высокими механическими свойствами, являющимися следствием особенностей структуры армирования и свойств матрицы, биосовместимостью и хорошей обрабатываемостью, обеспечиваемой за счет углерода. Использование стержней, содержащих предложенные химические соединения, позволяет обеспечить в структуре материала основы имплантата, в заранее заданных местах, рентгеноконтрастность композиционного материала, а, следовательно, и имплантата, изготовленного из такого материала. За счет этого обеспечивается удобство контроля за установкой имплантата при операции и в ходе послеоперационного наблюдения.
Для формирования армирующего каркаса материала основы имплантата используют волокнистые армирующие элементы из углеродных волокон, ориентированных вдоль оси стержней, что обеспечивает наиболее полную реализацию модуля упругости углеродного волокна без травмирования его структуры. Для получения стержней, в частности, можно использовать технологию пултрузии, включающую:
- пропитку углеродных волокон полимерным связующим для формирования жгута,
- протягивание жгута через фильеру для получения требуемого сечения стержня,
- отверждение связующего.
Для изготовления стержней, придающих имплантату рентгеноконтрастность, используют аналогичную технологию. Химические вещества вводят в состав стержня, до и/или во время, и/или после осуществления вышеописанных стадий изготовления углеволокнистого стержня. Примерами могут быть:
- предварительная обработка углеродных волокон растворами, расплавами или суспензиями, содержащими выбранные химические вещества,
- осуществление стадии пропитки углеродных волокон полимерным связующим с использованием добавок химических веществ в пропитывающую жидкость,
- дополнительная обработка отвержденного углеволокнистого стержня растворами, расплавами или суспензиями химических веществ с последующей сушкой.
Из стержней, сформованных из углеродных волокон и содержащих химические вещества, собирают послойно каркас на оправке, например, следующим образом. На первом этапе сборки в отверстиях по периметру оправки устанавливают стержни вертикально, далее осуществляют сборку горизонтальных слоев, устанавливая стержни в слое параллельно друг другу и под углом 60° по отношению к стержням предыдущего и последующего слоев. После укладки горизонтальных слоев на нужную высоту в образовавшиеся сквозные вертикальные каналы устанавливают дополнительные стержни. Каркас снимают с оправки.
Для получения в имплантате рентгеновского контраста от определенных заранее зон и направлений в сочетании с отсутствием контраста в других зонах и по другим направлениям, в ходе сборки каркаса наряду со стержнями, содержащими химические вещества, используют углеволокнистые стержни, не содержащие химических веществ. Стержни, не содержащие химические вещества, укладывают в каркас в тех направлениях и областях получаемого композиционного материала, где рентгеновский контраст нежелателен. В направлениях и областях, где такой контраст необходим, используют стержни, содержащие химические вещества.
Далее каркас из стержней, сформованных из углеродных волокон, помещают в реактор и в среде газообразного углеводорода (углеводородов) осуществляют формировании пироуглеродной матрицы. Низкомолекулярные углеводороды (метан, этан, пропан, ацетилен, бензол и др.) и их смеси, например природный газ, при повышенной температуре, обычно в интервале 550-1200°С, способны вступать в гетерогенную химическую реакцию разложения с образованием углерода и водорода. Протекание реакции разложения в порах углеволокнистого каркаса обеспечивает формирование пироуглеродной матрицы. Для процесса можно использовать реактор из нержавеющей стали. Нагревателями могут служить углеграфитовые блоки или пластины, а нагрев осуществляться пропусканием через них электрического тока. Реактор снабжен средствами подачи, регулирования и измерения расхода газа. Температурный режим, расход газа и время осуществления процесса выбирают так, чтобы полученный композиционный материал предпочтительно имел плотность 1,30-1,75 г/см3.
Следует заметить, что на этапе нагрева углеволокнистого каркаса до температуры осаждения пироуглеродной матрицы, а также в ходе осаждения матрицы, содержащиеся в стержнях химические вещества, в зависимости от их состава, остаются неизменными по составу и структуре или преобразовываются в другие химические соединения. Образовавшиеся или неизменившиеся в ходе нагрева химические соединения локализованы в стержнях армирующей основы материала и в дальнейшем, при формировании пироуглеродной матрицы, входят в структуру получаемого композиционного материала. В ходе процесса осаждения пироуглерода поверхность частиц химических соединений постепенно покрывается пироуглеродом, который, как матрица, связывает их со всей макроструктурой как стержня, в котором они присутствуют, так и композиционного материала в целом.
В результате реализации описанного способа получают композиционный материал, в котором наряду с углеродом содержатся одно или несколько химических соединений алюминия, кремния, кальция, титана, циркония, ниобия, гафния, тантала или вольфрама. Эти соединения неравномерно распределены по материалу - они сосредоточены только в углеволокнистых стержнях армирующей основы. Причем при необходимости не во всех, а только заранее определенных, например в стержнях вертикального направления. Содержание в стержнях указанных химических соединений придает им рентгеноконтрасность. При этом в зависимости от доли каркаса, собранного из стержней, содержащих химические соединения, рентгеноконтрасность материала увеличивается. Тем самым имеется возможность регулировать рентгеноконтрасность композиционного материала на этапе его изготовления. Другим способом регулирования рентгеноконтрасности является изменение концентрации химического соединения, а также выбор того или иного химического соединения из предложенной группы.
Из полученного материала механической обработкой вырезают основу имплантата нужной формы, наиболее соответствующей дефекту позвоночника, который требует компенсации. Форма имплантата может быть различной - цилиндрическая, призматическая, неправильная, но соответствующая дефекту позвоночника. Для выбора формы могут быть использованы результаты предварительных исследований пациента. В основе имплантата должны быть выполнены один или несколько сквозных или глухих каналов. Такие каналы предпочтительно выполнять с выходом на основания имплантатов, т.е. на места примыкания имплантата к телам позвонков.
Таким образом изготавливают основу имплантата из углерод-углеродного композиционного материала. В каналы изготовленной основы вводят лекарственное средство. Выбор лекарственного средства осуществляют в зависимости от типа воспалительного или онкологического процесса у пациента. При этом руководствуются данными об активности лекарственного средства, а также максимально допустимых доз, разрешенных к применению.
Затем поверхность основы имплантата покрывают слоем богатой тромбоцитами плазмы крови, или слоем гидроксиапатита, или двумя последовательными слоями богатой тромбоцитами плазмы крови и гидроксиапатита. Сформированный на поверхности основы имплантата слой богатой тромбоцитами плазмы крови (с содержанием 0,02-0,3 г на 1 см2 поверхности имплантата) индуцирует формирование новообразованной костной ткани. Богатая тромбоцитами плазма крови - это плазма с содержанием в ней тромбоцитов до 1000000 в 1 мл. В оперированной области, т.е. на поверхности углеродной основы, тромбоциты в имеющей консистенцию желе плазме крови дегранулируются с освобождением большого количества факторов роста (TGF, PDGF, EGF и др.), что обеспечивает значительную остеоиндукцию (воздействие на полипотентные клетки предшественники). При этом эффект остеогенеза приводит к формированию зрелой костной ткани на поверхности имплантата. За счет этого значительно сокращаются сроки восстановления пациента.
Сформированный на поверхности основы слой гидроксиапатита (с содержанием 0,02-0,5 г на 1 см2 поверхности имплантата) не только покрывает ее, но и проникает в поверхностные поры основы имплантата. Причем гидроксиапатит, в силу своих остеоиндуктивных свойств, способствует проникновению в него оссеина (коллагена 1 типа) и остеобластов. Это упрощает доставку таких элементов как кальций и фосфор к месту формирования костной ткани, т.е. к оперированной области. За счет этого сокращаются сроки восстановления пациента.
Совместное нанесение слоев богатой тромбоцитами плазмы крови и гидроксиапатита усиливает эффект каждого из компонентов.
После введения в основу лекарственного средства и нанесения на основу слоя богатой тромбоцитами плазмы крови и/или гидроксиапатита, имплантат для хирургического лечения онкологических и воспалительных заболеваний позвоночника является окончательно изготовленным и готовым к применению.
Имплантат используют в хирургии позвоночника при воспалительных и опухолевых заболеваниях. Имплантат устанавливают и приводят в рабочее состояние, например в следующей последовательности. После декомпрессии спинного мозга и резекции тел пораженных позвонков, в телах соседних позвонков выполняют пазы-зарубки для установки имплантата. Перед внедрением имплантата производят реклинацию пораженного отдела. Имплантат плотно внедряют в выполненный резекцией межпозвонковый диастаз. После прекращения реклинации имплантат оказывается плотно фиксированным в костном ложе. Рану послойно ушивают с оставлением дренажа.
В ходе операции методом компьютерной томографии наблюдают правильность установки имплантата, а именно - его положение в костном ложе и ориентацию относительно соседних позвонков. Такое наблюдение обеспечивается рентгеноконтрастностью имплантата.
При установке имплантата лекарственное средство, размещенное в канале (каналах) имплантата, адресно доставляется в очаг развития воспалительного или онкологического заболевания, что положительно сказывается на ходе лечения пациента.
Нанесенный на поверхность основы имплантата слой богатой тромбоцитами плазмы крови и/или слой гидроксиапатита ускоряет процесс формирования новой костной ткани и последующего формирования костно-углеродного блока, что также положительно сказывается на ходе лечения пациента.
Следующий пример характеризует сущность предлагаемого изобретения.
Имплантат имеет цилиндрическую форму с диаметром 22 мм и высотой 26 мм с двумя глухими каналами диаметром 5 мм, глубиной 10 мм, выполненными на основаниях цилиндра по его оси и заполненными рифампицином - по 100 мг в каждый канал, и покрыт слоем гидроксиапатита 0,2 г на 1 см2 поверхности имплантата. Имплантат предназначен для проведения операций по замещению костных дефектов в поясничном отделе позвоночника при костном туберкулезе. Основа имплантата изготовлена из углерод-углеродного композиционного материала, имеющего армирующий каркас и пироуглеродную матрицу. Армирующий каркас сформирован из стержней, сформованных из углеродных волокон, расположенных вдоль оси стержня. Каркас имеет четыре направления армирования: три - в плоскости основания цилиндра, образуя угол 60° между собой, четвертое направление армирования совпадает с цилиндрической осью имплантата. В стержнях четвертого направления содержится ортофосфат кальция (5,6% масс.). Материал основы имплантата имеет плотность - 1,63 г/см3, модуль упругости материала - 12 ГПа, прочность при сжатии - 92 МПа.
Сделанные рентгеновские снимки показали рентгеноконтрастность имплантата: на снимках отчетливо видны входящие в структуру материала стержни, причем только те, что имеют вертикальную ориентацию в каркасе материале основы имплантата.
Проведенные токсикологические исследования основы имплантата в соответствии с ГОСТ Ρ ИСО 10993-99 и ГОСТ Ρ 52770-2007 показали:
1. Изменение рН водной вытяжки (3 суток, 37°С, соотношение 10 г материала и 500 мл воды) по сравнению с контрольной дистиллированной водой составляет 0,3 (допустимое значение 1,0).
2. Максимальное значение оптической плотности водной вытяжки в УФ-области спектра в интервале длин волн 230-360 нм составляет 0,1 (допустимое значение 0,3).
3. Содержание в водной вытяжке формальдегида 0,01 мг/л, винилацетата - менее 0,05 мг/л (допустимые значения - 0,1 и 0,2 мг/л соответственно).
4. Изучение токсичности на анализаторе токсичности АТ-05, используя замороженную в парах жидкого азота гранулированную сперму быка, показало индекс токсичности 94,2% (допустимое значение 70-120%). Материал имплантата не токсичен.
Таким образом, имплантат по своим механическим и токсическим свойствам полностью соответствует требованиям, предъявляемым к материалам, используемым для замещения костных дефектов.
Предлагаемое изобретение обеспечивает создание имплантата для хирургического лечения воспалительных и опухолевых болезней позвоночника, который обладает механическими свойствами, близкими к свойствам кости, и удобен при проведении операций за счет рентгеноконтрастности имплантата и упрощает наблюдение за пациентом в послеоперационный период рентгеновскими методами диагностики.
название | год | авторы | номер документа |
---|---|---|---|
ИМПЛАНТАТ ДЛЯ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ВОСПАЛИТЕЛЬНЫХ И ОПУХОЛЕВЫХ БОЛЕЗНЕЙ ПОЗВОНОЧНИКА | 2015 |
|
RU2606182C1 |
ИМПЛАНТАТ ДЛЯ ЗАМЕЩЕНИЯ ТЕЛ ПОЗВОНКОВ И МЕЖПОЗВОНКОВЫХ ДИСКОВ | 2015 |
|
RU2610027C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТНЫХ ДЕФЕКТОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2609829C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ КОМПЕНСАЦИИ КОСТНЫХ ДЕФЕКТОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2601371C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ИМПЛАНТАТА | 2015 |
|
RU2609831C1 |
ИМПЛАНТАТ ДЛЯ ЗАМЕЩЕНИЯ ПОЗВОНКОВ И МЕЖПОЗВОНКОВЫХ ДИСКОВ | 2015 |
|
RU2616996C2 |
ИМПЛАНТАТ ДЛЯ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ВОСПАЛИТЕЛЬНЫХ И ОПУХОЛЕВЫХ ЗАБОЛЕВАНИЙ ПОЗВОНОЧНИКА | 2015 |
|
RU2611883C1 |
КОМПОЗИЦИОННЫЙ УГЛЕРОДНЫЙ НАНОМАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТНЫХ ДЕФЕКТОВ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ИМПЛАНТАТ ИЗ КОМПОЗИЦИОННОГО УГЛЕРОДНОГО НАНОМАТЕРИАЛА | 2016 |
|
RU2617052C1 |
УГЛЕРОДНЫЙ ИМПЛАНТАТ ДЛЯ КОМПЕНСАЦИИ КОСТНЫХ ДЕФЕКТОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2015 |
|
RU2609827C1 |
УГЛЕРОДНЫЙ ИМПЛАНТАТ ДЛЯ ЗАМЕЩЕНИЯ КОСТНЫХ ДЕФЕКТОВ | 2015 |
|
RU2609832C1 |
Изобретение относится к медицине, хирургии. Имплантат для хирургического лечения воспалительных и опухолевых заболеваний позвоночника выполнен из углерод-углеродного материала. Основа имеет по меньшей мере один канал, заполненный лекарственным средством. Материал содержит пироуглеродную матрицу и многонаправленный армирующий каркас из стержней. Стержни содержат в своем составе одно или несколько химических соединений из группы: оксид алюминия, карбид кремния, ортофосфат кальция, пирофосфат кальция, оксид титана, карбид титана, оксид циркония, карбид циркония, оксид ниобия, карбид ниобия, оксид гафния, карбид гафния, оксид тантала, карбид тантала, карбид вольфрама в количестве 0,1-10% от массы стержня. Поверхность имплантата покрыта слоем богатой тромбоцитами плазмы крови и/или слоем гидроксиапатита. Имплантат упрощает наблюдение за пациентом в послеоперационный период рентгеновскими методами диагностики за счет рентгеноконтрастности и свойств, близких к свойствам кости. 2 з.п. ф-лы.
1. Имплантат для хирургического лечения онкологических и воспалительных заболеваний кости, включающий основу из углерод-углеродного материала, снабженную по меньшей мере одним каналом, заполненным лекарственным средством, отличающийся тем, что основа выполнена из углерод-углеродного материала, содержащего пироуглеродную матрицу и многонаправленный армирующий каркас из стержней, сформованных из углеродных волокон, расположенных вдоль оси стержней, причем некоторые заранее выбранные стержни, стержни одного, нескольких или всех направлений армирования, входящие в армирующий каркас, содержат в своем составе одно или несколько химических соединений из группы: оксид алюминия, карбид кремния, ортофосфат кальция, пирофосфат кальция, оксид титана, карбид титана, оксид циркония, карбид циркония, оксид ниобия, карбид ниобия, оксид гафния, карбид гафния, оксид тантала, карбид тантала, карбид вольфрама в количестве 0,1-10% от массы стержня, а поверхность имплантата покрыта слоем богатой тромбоцитами плазмы крови и/или слоем гидроксиапатита.
2. Имплантат по п. 1, отличающийся тем, что слой богатой тромбоцитами плазмы крови составляет 0,02-0,3 г на 1 см2 поверхности имплантата.
3. Имплантат по п. 1, отличающийся тем, что слой гидроксиапатита составляет 0,02-0,5 г на 1 см2 поверхности имплантата.
ИМПЛАНТАТ ДЛЯ ХИРУРГИЧЕСКОГО ЛЕЧЕНИЯ ТУБЕРКУЛЕЗНОГО СПОНДИЛИТА | 1999 |
|
RU2199978C2 |
ПРОТЕЗ ТЕЛА ПОЗВОНКА | 2000 |
|
RU2204361C2 |
0 |
|
SU88952A1 | |
АППАРАТ ДЛЯ СПАСАТЕЛЬНЫХ ПОДВОДНЫХ РАБОТ | 1928 |
|
SU9598A1 |
US 5981827 A, 09.11.1999 | |||
ШЕВЦОВ В.И | |||
Опорная пластика дефектов костей с использованием наноструктурных имплантатов | |||
Клинические рекомендации | |||
Самара, 2014. |
Авторы
Даты
2017-01-10—Публикация
2015-09-25—Подача