Способ получения катионзамещенного трикальцийфосфата Российский патент 2017 года по МПК C01B25/32 C01F11/00 C01F1/00 B82B3/00 

Описание патента на изобретение RU2607743C1

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания покрытий на металлических имплантатах в хирургии и стоматологии и в других областях медицины.

Порошок трикальцийфосфата (ТКФ) используется для получения керамических материалов, применяемых в медицине в качестве прочных костных имплантатов и/или пористых матриксов для восстановления костной ткани. Основными характеристиками, определяющими использование ТКФ, являются фазовый состав и дисперсность. Уменьшение размеров частиц порошков ТКФ позволяет получать материалы с более высокой прочностью и более высокой резорбируемостью, что способствует созданию на их основе надежных костных имплантатов и пористых матриксов для быстрого восстановления костной ткани. В связи с тем, что часто в ходе операций и последующего лечения происходит инфицирование раневого пространства, приводящее к необходимости повторных операций, придание материалу имплантата антимикробных свойств становится важной задачей.

Известен способ получения АФК при смешении растворов диаммонийфосфата и нитрата кальция. Смесь при барботировании аргоном выдерживали при рН 11 в течение 48 часов при комнатной температуре (J. Amer. Ceram. Soc. 1989, 72, №8, 1476-1478). Однако, несмотря на сложность технологии, указанный способ не позволяет получить АФК в чистом виде без примесей других побочно образующихся фосфатов кальция, например кальцийдефицитного гидроксиапатита кальция.

Наиболее близким по техническому решению является патент РФ №2367633. Способ получения наноразмерного порошка на основе системы трикальцийфосфат-гидроксиапатит для синтеза керамических биоматериалов. Проводят химическое взаимодействие нитрата кальция и гидрофосфата аммония в растворе с добавлением аммиака, осаждают влажный порошок, промывают последовательно водой, этанолом и толуолом и прокаливают при 150-900°C и получают порошок на основе ТКФ, содержащий гидроксиапатит (ГА), характеризующийся атомарным соотношением Са/Р от 1,48 до 1,69 и площадью удельной поверхности не менее 120-200 м2/г. Недостатком данного способа является отсутствие у получаемого порошка бактерицидных свойств, а также нежелательная примесь ГА, который медленно резорбируется в организме при имплантации ГА и керамических имплантатов, получаемых из этого порошка. Кроме того, порошок ТКФ, полученный данным способом, не проявляет антибактериальной активности.

Техническим результатом предлагаемого изобретения является придание порошку ТКФ и пористым керамическим материалам из него антибактериальной активности и получение материалов из ТКФ без примесей ГА и других фосфатов кальция (порошки характеризуются однородным фазовым составом, соответствующим структуре витлокита), после термической обработки при 700-1300°C; размер частиц от 20 нм до 2 мкм.

Технический результат достигается тем, что в способе получения катионзамещенного трикальцийфосфата путем осаждения средних фосфатов кальция, образующихся при сливании и постоянном перемешивании водных растворов нитрата кальция и двухзамещенного фосфата аммония, взятых в мольном соотношении 3:2, при рН 7,0, с последующим фильтрованием образовавшегося осадка и его термической обработкой при температурах 700-1300°C, согласно изобретению к реакционной смеси добавляют рассчитанное количество растворов солей нитратов, или ацетатов, или хлоридов следующих элементов: железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния, при следующем соотношении реагентов, мол.%:

нитрат кальция - 40-59,9

двухзамещенный фосфат аммония - 40

соль железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния - 0,1-20

Образующиеся после термической обработки при 700-1300°C порошки характеризуются однородным фазовым составом, соответствующим структуре витлокита, высокодисперсным состоянием с размером частиц от 20 нм до 2 мкм и антимикробной активностью.

Присутствие ионов цинка, железа, меди в полученном порошке ТКФ обеспечивает антибактериальную активность. Уменьшение соотношения (нитрат кальция + соль металла)/фосфат аммония меньше чем 1,5 приводит к появлению в материале после термообработки при 700°C фазы пирофосфата кальция, который является нежелательным компонентом, затрудняющим получение керамики из полученного порошка. При увеличении соотношения (нитрат кальция + соль металла)/фосфат аммония больше чем 1,5, а также при увеличении рН выше 7,0 в материале после термообработки формируется фаза ГА, которая также является нежелательной.

Пример 1

В реактор с пропеллерной мешалкой помещали 280 мл раствора нитрата кальция концентрации 0,5 моль/л, 20 мл раствора нитрата цинка концентрации 0,5 моль/л, 20 мл 25%-ного водного раствора аммиака. Из капельной воронки по каплям при перемешивании добавляли 200 мл раствора двухзамещенного фосфата аммония концентрации 0,5 моль/л. рН реакционной смеси поддерживали на уровне 6,9±0,1, добавляя по каплям 10%-ный водный раствор аммиака. Перемешивание реакционной смеси продолжали в течение 60 мин, после чего образовавшийся осадок отделяли фильтрованием, промывали дистиллированной водой и этанолом и сушили в сушильном шкафу при температуре 105°C. Для определения фазового состава осадок прокаливали в течение 1 часа при 900°C. По данным рентгенофазового анализа основной кристаллической фазой полученных порошков является витлокит, примесей пирофосфата и ГА не обнаружено.

Пример 2

Материал получен аналогично примеру 1; отличие состоит в том, что вместо 20 мл раствора нитрата цинка концентрации 0,5 моль/л вводили 20 мл раствора ацетата меди концентрации 0,5 моль/л; температура термической обработки материала - 1300°C. По данным рентгенофазового анализа основной кристаллической фазой полученных порошков является витлокит, примесей пирофосфата и ГА не обнаружено.

Пример 3

Материал получен аналогично примеру 1; отличие состоит в том, что вместо 20 мл раствора нитрата цинка концентрации 0,5 моль/л вводили 20 мл раствора нитрата серебра концентрации 0,5 моль/л; температура термической обработки материала - 700°C. По данным рентгенофазового анализа основной кристаллической фазой полученных порошков является витлокит, примесей пирофосфата и ГА не обнаружено.

Пример 4

Материал получен аналогично примеру 1; отличие состоит в том, что вместо 20 мл раствора нитрата цинка концентрации 0,5 моль/л вводили 20 мл раствора хлорида железа (III) концентрации 0,5 моль/л; температура термической обработки материала - 1100°C. По данным рентгенофазового анализа основной кристаллической фазой полученных порошков является витлокит, примесей пирофосфата и ГА не обнаружено.

Для всех полученных материалов антибактериальную активность определяли по отношению к штамму E.Coli, помещая спрессованный из полученного порошка образец в чашку Петри с культурой E.Coli. О наличии антибактериальной активности материала судили по ширине светлого кольца, образующегося вокруг образца (табл. 1).

Все образцы, приведенные в таблице, получены прессованием синтезированных порошков замещенных фосфатов кальция с последующим их спеканием при температуре 1100°C.

Ag1 и Ag2 - сереброзамещенный ТКФ, содержание серебра 0,34% масс., параллельные посевы культуры E.Coli

Cu1 и Cu2 - медьзамещенный ТКФ, содержание меди 0,20% масс., параллельные посевы культуры E.Coli

Fe1 и Fe2 - железозамещенный ТКФ, содержание железа 0,50% масс., параллельные посевы культуры E.Coli

Zn1 и Zn2 - цинкзамещенный ТКФ, содержание цинка 0,20% масс., параллельные посевы культуры E.Coli

Похожие патенты RU2607743C1

название год авторы номер документа
Способ получения двойных катионзамещенных трикальцийфосфатов 2022
  • Фадеева Инна Вилоровна
  • Форысенкова Анна Александровна
  • Лебедев Владимир Николаевич
  • Дейнеко Дина Валерьевна
  • Слукин Павел Владимирович
RU2804690C1
Способ получения биосовместимых висмут-апатитов 2021
  • Буланов Евгений Николаевич
  • Князев Александр Владимирович
RU2776293C1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ КЕРАМИКИ ИЗ ГИДРОКСИАПАТИТА, ОБЛАДАЮЩЕЙ АНТИМИКРОБНОЙ АКТИВНОСТЬЮ 2011
  • Баринов Сергей Миронович
  • Фадеева Инна Вилоровна
  • Бакунова Наталия Валерьевна
  • Комлев Владимир Сергеевич
  • Фомин Александр Сергеевич
  • Тютькова Юлия Борисовна
RU2475461C2
Способ получения окрашенного однофазного пирофосфата кальция 2019
  • Фадеева Инна Вилоровна
  • Сафронова Татьяна Викторовна
  • Баринов Сергей Миронович
  • Тютькова Юлия Борисовна
RU2714188C1
Способ получения керамического биосовместимого материала 2016
  • Лясникова Александра Владимировна
  • Дударева Олеся Александровна
  • Лясников Владимир Николаевич
  • Гришина Ирина Петровна
  • Маркелова Ольга Анатольевна
  • Пичхидзе Сергей Яковлевич
RU2623076C1
СПОСОБ ПОДГОТОВКИ ШИХТЫ ДЛЯ ПОЛУЧЕНИЯ КЕРАМИЧЕСКОГО БИОДЕГРАДИРУЕМОГО МАТЕРИАЛА 2010
  • Путляев Валерий Иванович
  • Сафронова Татьяна Викторовна
  • Кукуева Елена Вячеславовна
  • Третьяков Юрий Дмитриевич
RU2456253C2
ГИДРОТЕРМАЛЬНЫЙ СПОСОБ ПОЛУЧЕНИЯ БИОРЕЗОРБИРУЕМОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА 2018
  • Коротченко Наталья Михайловна
  • Покровская Любовь Анатольевна
  • Гигилев Александр Сергеевич
RU2678812C1
СПОСОБ ПОЛУЧЕНИЯ КЕРАМИКИ НА ОСНОВЕ ГИДРОКСИАПАТИТА, СОДЕРЖАЩЕГО ОКСИД ЦИНКА 2007
  • Сафронова Татьяна Викторовна
  • Путляев Валерий Иванович
  • Шехирев Михаил Алексеевич
  • Третьяков Юрий Дмитриевич
RU2372313C2
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИЛАПАТИТА 1992
  • Маликов В.А.
  • Смирнов И.П.
  • Кузь В.Е.
  • Алешина Н.М.
  • Логачева М.А.
  • Сычева В.Ю.
RU2038293C1
СПОСОБ ПОЛУЧЕНИЯ СУБМИКРОННОЙ БИФАЗНОЙ КЕРАМИКИ НА ОСНОВЕ ТРИКАЛЬЦИЙФОСФАТА И ГИДРОКСИАПАТИТА 2013
  • Сафронова Татьяна Викторовна
  • Путляев Валерий Иванович
  • Евдокимов Павел Владимирович
  • Казакова Гиляна Константиновна
  • Иванов Владимир Константинович
RU2555685C2

Реферат патента 2017 года Способ получения катионзамещенного трикальцийфосфата

Изобретение относится к химической и медицинской отраслям промышленности и может быть использовано в производстве исходного биосовместимого материала, пригодного для изготовления плотной и пористой керамики, применяющейся в качестве скэффолдов в инженерии костной ткани, мишеней для создания покрытий на металлических имплантатах в хирургии и стоматологии и в других областях медицины. Описан способ получения катионзамещенного трикальцийфосфата путем осаждения средних фосфатов кальция, образующихся при сливании и постоянном перемешивании водных растворов нитрата кальция и двухзамещенного фосфата аммония, взятых в мольном соотношении 3:2, при pH 7,0, с последующим фильтрованием образовавшегося осадка и его термической обработкой при температурах 700-1300°C. При этом к реакционной смеси добавляют рассчитанное количество растворов солей нитратов, или ацетатов, или хлоридов следующих элементов: железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния, при следующем соотношении реагентов, мол.%: нитрат кальция - 40-59,9, двухзамещенный фосфат аммония - 40, соль - 0,1-20. Образующиеся после термической обработки порошки характеризуются однородным фазовым составом, соответствующим структуре витлокита, высокодисперсным состоянием с размером частиц от 20 нм до 2 мкм и антимикробной активностью. 1 табл., 4 пр.

Формула изобретения RU 2 607 743 C1

Способ получения катионзамещенного трикальцийфосфата путем осаждения средних фосфатов кальция, образующихся при сливании и постоянном перемешивании водных растворов нитрата кальция и двухзамещенного фосфата аммония, взятых в мольном соотношении 3:2, при рН 7,0, с последующим фильтрованием образовавшегося осадка и его термической обработкой при температуре 700-1300°C, отличающийся тем, что к реакционной смеси добавляют рассчитанное количество растворов солей нитратов, или ацетатов, или хлоридов следующих элементов: железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния, при следующем соотношении реагентов, мол.%:

нитрат кальция - 40-59,9

двухзамещенный фосфат аммония - 40

соль железа, цинка, меди, натрия, калия, стронция, бария, висмута, кремния - 0,1-20,

при этом образующийся после термической обработки при температуре 700-1300°C порошок характеризуется однородным фазовым составом, соответствующим структуре витлокита, высокодисперсным состоянием с размером частиц от 20 нм до 2 мкм и антимикробной активностью.

Документы, цитированные в отчете о поиске Патент 2017 года RU2607743C1

ДВОЙНОЙ ФОСФАТ CaCu(PO) В КАЧЕСТВЕ МАТЕРИАЛА ДЛЯ ОЧИСТКИ ГАЗОВЫХ СМЕСЕЙ ОТ ВОДОРОДА 1998
  • Лазоряк Б.И.
  • Жданова А.Н.
  • Морозов В.А.
  • Кхан Насрин
RU2129983C1
ДВОЙНЫЕ ФОСФАТЫ CaFe(PO) (0<x≅1 В КАЧЕСТВЕ МАТЕРИАЛОВ ДЛЯ ОЧИСТКИ ГАЗОВЫХ СМЕСЕЙ ОТ ВОДОРОДА 1995
  • Лазоряк Б.И.
  • Жданова А.Н.
  • Морозов В.А.
RU2081820C1
WO 2012014172 A1, 02.02.2012
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО СИЛИКАТЗАМЕЩЕННОГО КАРБОНАТГИДРОКСИАПАТИТА 2014
  • Голованова Ольга Александровна
  • Солоненко Анна Петровна
RU2555337C1
US 2009074645 A1, 19.03.2009.

RU 2 607 743 C1

Авторы

Баринов Сергей Миронович

Фадеева Инна Вилоровна

Фомин Александр Сергеевич

Филиппов Ярослав Юрьевич

Даты

2017-01-10Публикация

2015-09-22Подача