Полиэтилентерефталатная полимерная композиция и способ ее получения Российский патент 2017 года по МПК C08K13/02 

Описание патента на изобретение RU2610772C2

Настоящее изобретение относится к области полимерных композитов, более конкретно - к полимерным композитам, состоящим из полиолефиновой матрицы и маточного концентрата - растворенный в дихлоруксусной кислоте полигидроксиэфир совместно с органомодифицированной глиной, причем органомодифицированная глина представляет собой «неорганическое ядро - органическая оболочка». Изобретение относится также к способам получения полимерного композита, предназначенного для производства тары с низкой газопроницаемостью (повышенными барьерными характеристиками).

Как известно из области техники, использование наполнителей в составе полимерных материалов является одним из способов уменьшения газопроницаемости полимеров и повышения их барьерных свойств [Рейтлингер С.А. Проницаемость полимерных материалов. М.: Химия, 1974]. Эффективность наполнителя с микронным размером частиц определяется его количеством (наибольший эффект снижения проницаемости наблюдается при введении 10-20 маc.% наполнителя); размером и формой частиц. Вследствие увеличения пути молекул газа и уменьшения поперечного сечения полимерной части пленки частицы наполнителя препятствуют проходу газов через полимер. Известно, что главными факторами, определяющими эффективность наполнителя, являются лиоадсорбционная способность и молекулярная природа частиц наполнителя. В случае низкой адгезии между полимером и наполнителем диффузионная проницаемость сменяется молекулярным или вязкостным течением газа, что приводит к ухудшению барьерных свойств композита [Маргаритов В.Б. Физико-химия каучука и резины. М.-Л.: Госхимиздат, 1941].

Известен нанокомпозит с низкой газопроницаемостью и способ его получения по патенту на изобретение РФ №2461515. Нанокомпозит с барьерными свойствами на основе полиэтилена включает полиэтилен низкой плотности в качестве матрицы и в качестве наполнителя - наночастицы, представляющие собой модифицированные алкильными группами молекулярные силиказоли, размеры частиц которых находятся в пределах от 2 до 50 нм. Нанокомпозитный материал дополнительно перерабатывают экструзионным способом с получением изделия в виде пленки, характеризующейся улучшенной газопроницаемостью по кислороду и по азоту. Способ получения нанокомпозитного материала включает в себя экструзионное смешение расплава полиэтилена и наночастиц в экструдере при температуре 160-220°C, при этом количество наночастиц составляет 1-5 мас.% от массы полиэтилена.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому является способ получения полиолефиновых нанокомпозитов олефиновой полимерной матрицы и смектитовой глины по патенту РФ №2325411. Полиолефиновый нанокомпозит получают путем смешения в расплаве (а) полиолефина и (b) смектитовой глины в присутствии, по крайней мере, одного интеркалирующего агента, при отношении интеркалирующего агента к глине по крайней мере, 1:3 из расчета зольности указанной глины. В качестве интеркалирующего агента выбирают гидроксизамещенные сложные эфиры карбоновой кислоты, амиды, гидроксизамещенные амиды и окисленные полиолефины, которые являются твердыми при комнатной температуре. Варианты способа позволяют получить нанокомпозиты с улучшенными механическими и барьерными свойствами и с высоким экономическим показателем "затраты - эффективность". Как утверждают авторы патента смектитовый глинистый минерал может быть необработанным либо он может быть модифицирован агентом, вызывающим набухание и содержащим органические катионы, путем обработки этой глины одной или несколькими органическими катионными солями для замены катионов металла, присутствующих в пространстве между слоями данного глинистого материала, на органические катионы, и тем самым для увеличения расстояния между этими слоями. Увеличение расстояния между этими слоями слоистого силиката способствует включению глины в другие материалы, а в данном случае в олефиновый полимер. В качестве модифицирующего агента используют (а) гидроксизамещенные сложные эфиры карбоновой кислоты, такие как, например, моностеарат глицерина, моностеарат сорбитана и тристеарат сорбитана, (b) амиды, такие как, например, бегенамид, стеарилстеарамид и этилен-бис-стеарамид, (c) гидроксизамещенные амиды, такие как, например, этиловый спирт стеарамида и (d) окисленные полиолефины. Отношение "интеркалирующий агент:смектитовая глина" составляет, по крайней мере, 1:3, предпочтительно 2:3-4:3, но может достигать 9:3 или выше. Основным недостатком указанного материала является наличие достаточного большого количества глинистого материала.

Задачей изобретения является достижение нового технического результата, заключающегося в том, чтобы разработать новый полиэтилентерефталатный полимерный материал с высокими барьерными характеристиками - низкой газопроницаемостью.

Задачей изобретения является также разработка технологичных способов получения нового полиэтилентерефталатного полимерного материала.

Задача решается тем, что создан новый полиэтилентерефталатный полимерный материал с улучшенными барьерными свойствами, включающий полиэтилентерефталат (ПЭТ) и маточный концентрат при следующем соотношении, мас.ч:

ПЭТ 10 МК 1-5

В свою очередь, маточный концентрат имеет в своем составе следующие компоненты при следующем соотношении, мас.ч.:

Органомодифицированный слоистосиликатный наполнитель 100 Полигидроксиэфир 5-15

Предварительно полигидроксиэфир растворяют в растворителе дихлоруксусная кислота при соотношении 1:1.

Полиэтилентерефталат (ПЭТ) и его сополиэфиры используются в качестве полимерной матрицы в полимерном материале настоящего изобретения. В качестве модификаторов полимерной матрицы используется маточный концентрат. Маточный концентрат получают путем смешения в ультразвуковой ванне слоистосиликатного материала и полигидроксиэфира, предварительно растворенного в указанном растворителе в соотношении 1:1. Используемый органомодифицированный слоистосиликатный материал представляет собой монтмориллонит Герпегежского месторождения Кабардино-Балкарской республики с толщиной частиц от 1 до 5 нм, длиной от 100 до 200 нм, катионообменной емкостью 95 мг-экв/100 г глины и содержанием органических катионов предпочтительно 5-20 мас.% (Патент на изобретение РФ №2412113, «Способ получения мономерных органомодифицированных глин, используемых в нанокомпозитах», МПК C01B 33/44, B82B 1/00). Причем в качестве органомодификаторов глины используются соединения, представленные в таблице 1. Предварительно высушиваются ПЭТ гранулы, которые затем обрабатывают полученным раствором МК. Обработанные ПЭТ гранулы подвергают сушке в вакуумной печи. Затем высушенные обработанные ПЭТ гранулы перерабатывают в экструдере с последующим получением полимерного материала.

Сущность изобретения поясняется следующими примерами.

Примеры 1-4 (предлагаемые).

Изготавливают полимерный материал согласно изобретению (пример 1-4), рецептуры которых приведены в таблице 1 и 2.

Предварительно высушиваются ПЭТ гранулы при температурных режимах 160°C 2 часа, 140°C 2 часа и 120°C 2 часа. Высушенные гранулы обрабатывают полученным раствором МК. Обработанные ПЭТ гранулы подвергают сушке в вакуумной печи при температурных режимах 90-110°C. Затем высушенные обработанные ПЭТ гранулы перерабатывают в зонах I-VI при температурах 90°C, 235°C, 245°C, 250°C, 255°C и 260°C соответственно с последующим получением полимерного материала.

В процессе получения полимерного материала использовалось стандартное лабораторное оборудование: вакуумные шкафы, экструдер и известные методики испытаний полученных материалов и соответствующее для этих целей оборудование. Газопроницаемость материалов определялась в соответствии с «Методикой определения газопроницаемости пленочных полимерных и комбинированных материалов» разработанной ВНПОКП «Консервной промышленности и специальной пищевой технологии». Испытания на газопроницаемость проводили при температуре 23±2°C. Использовали кислород высокой степени чистоты (ГОСТ 5583-78) и углекислый газ высокой степени очистки (ГОСТ 8050-85). Для испытаний использовались образцы в виде пленок, имеющих форму диска, толщиной не менее 70±5 мкм с рабочей поверхностью 5*10-3 м2.

Полимерный материал готовят и испытывают аналогично примеру.

Результаты испытаний отражены в таблице 3. Как следует из представленных данных, предлагаемый полимерный материал характеризуется улучшенными значениями по показателям проницаемости по O2 и паропроницаемости.

Похожие патенты RU2610772C2

название год авторы номер документа
Полимерная композиция с улучшенными барьерными свойствами и способ его получения 2015
  • Микитаев Абдулах Касбулатович
  • Хаширова Светлана Юрьевна
  • Мусов Исмел Вячеславович
  • Жанситов Азамат Асланович
  • Мамхегов Рустам Мухамедович
  • Долбин Игорь Викторович
RU2610771C2
НАНОКОМПОЗИТ С НИЗКОЙ ГАЗОПРОНИЦАЕМОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2010
  • Музафаров Азиз Мансурович
  • Мешков Иван Борисович
  • Серенко Ольга Анатольевна
  • Виноградов Михаил Петрович
  • Харитонов Евгений Константинович
RU2461515C2
ПОЛИМЕРНЫЙ КОМПОЗИЦИОННЫЙ НАНОМАТЕРИАЛ 2014
  • Микитаев Абдулах Казбулатович
  • Хаширова Светлана Юрьевна
  • Мусов Исмел Вячеславович
  • Слонов Азамат Ладинович
  • Хакулова Диана Мухамедовна
RU2605590C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИОЛЕФИНОВЫХ НАНОКОМПОЗИТОВ 2003
  • Роузентал Джей С.
  • Волкович Майкл Д.
RU2325411C2
Однослойная свето- и кислородонепроницаемая бутылка для молока и молочных продуктов и способ её изготовления (варианты) 2016
  • Меркулов Вячеслав Анатольевич
  • Городецкий Сергей Маркович
  • Косицкий Дмитрий Вениаминович
RU2646672C2
СЖИМАЕМЫЕ ЕМКОСТИ ДЛЯ ТЕКУЧИХ ПРОДУКТОВ, ИМЕЮЩИЕ УЛУЧШЕННЫЕ БАРЬЕРНЫЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА 2001
  • Мюллер Шад
  • Ли Томас
  • Жупен Ален
RU2270146C2
Модифицирующий концентрат для полиэтилентерефталатного материала однослойных свето- и кислородонепроницаемых упаковок молока и молочных продуктов (варианты) и способ его изготовления (варианты) 2016
  • Меркулов Вячеслав Анатольевич
  • Городецкий Сергей Маркович
  • Узденский Виктор Борисович
  • Косицкий Дмитрий Вениаминович
RU2611505C1
Полиэтилентерефталатный материал для однослойных свето- и кислородонепроницаемых упаковок молока и молочных продуктов (варианты) и способ его изготовления (варианты) 2016
  • Меркулов Вячеслав Анатольевич
  • Городецкий Сергей Маркович
  • Узденский Виктор Борисович
  • Косицкий Дмитрий Вениаминович
RU2625870C1
СУПЕРКОНЦЕНТРАТ И КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ НА ЕГО ОСНОВЕ 2012
  • Микитаев Абдулах Касбулатович
  • Микитаев Муслим Абдулахович
  • Хаширова Светлана Юрьевна
  • Абазова Оксана Алексеевна
  • Хаширов Азамат Аскерович
RU2513766C2
Полимерная композиция с улучшенными барьерными свойствами 2015
  • Микитаев Абдулах Касбулатович
  • Хаширова Светлана Юрьевна
  • Мусов Исмел Вячеславович
  • Жанситов Азамат Асланович
RU2610602C2

Реферат патента 2017 года Полиэтилентерефталатная полимерная композиция и способ ее получения

Изобретение относится к области полимерных композитов, более конкретно - к полимерным композитам, состоящим из полиолефиновой матрицы и маточного концентрата - растворенный в дихлоруксусной кислоте полигидроксиэфир совместно с органомодифицированной глиной, причем органомодифицированная глина представляет собой «неорганическое ядро - органическая оболочка». Изобретение обеспечивает получение полимерного композита, предназначенного для производства тары с низкой газопроницаемостью (повышенными барьерными характеристиками). 2 н.п. ф-лы, 3 табл.

Формула изобретения RU 2 610 772 C2

1. Полимерная композиция для тары с улучшенными барьерными свойствами на основе полиэтилентерефталата, отличающаяся тем, что дополнительно содержит раствор маточного концентрата при следующем соотношении, мас.ч:

Полиэтилентерефталат 100 Вышеуказанный маточный концентрат 1-5,

где маточный концентрат включает в себя полигидроксиэфир, предварительно растворенный в растворителе - дихлоруксусной кислоте, и слоистосиликатный материал при следующем их соотношении, мас.ч:

Органомодифицированный слоистосиликатный материал 100 Вышеуказанный полигидроксиэфир 5-15,

а органомодифицированный слоистосиликатный материал представляет собой монтмориллонит с толщиной частиц 1 нм, длиной от 100 до 200 нм, катионообменной емкостью 95 мг-экв/100 г глины, модифицированный гуанидинсодержащими солями: акрилатом гуанидина, метакрилатом гуанидина, акрилатом аминогуанидина, метакрилатом аминогуанидина.

2. Способ получения полимерной композиции по п. 1, заключающийся в том, что полиэтилентерефталат обрабатывают раствором маточного концентрата, сушат в вакуумной печи.

Документы, цитированные в отчете о поиске Патент 2017 года RU2610772C2

СПОСОБ ПОЛУЧЕНИЯ ПОЛИОЛЕФИНОВЫХ НАНОКОМПОЗИТОВ 2003
  • Роузентал Джей С.
  • Волкович Майкл Д.
RU2325411C2
НАНОКОМПОЗИТ С НИЗКОЙ ГАЗОПРОНИЦАЕМОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2010
  • Музафаров Азиз Мансурович
  • Мешков Иван Борисович
  • Серенко Ольга Анатольевна
  • Виноградов Михаил Петрович
  • Харитонов Евгений Константинович
RU2461515C2
US 5552469 A1, 03.09.1996
СПОСОБ ПОЛУЧЕНИЯ МОНОМЕРНЫХ ОРГАНОМОДИФИЦИРОВАННЫХ ГЛИН, ИСПОЛЬЗУЕМЫХ В НАНОКОМПОЗИТАХ 2009
  • Мусаев Юрий Исрафилович
  • Хаширова Светлана Юрьевна
  • Микитаев Абдуллах Казбулатович
  • Мусаева Элеонора Борисовна
  • Лигидов Мухамед Хусенович
RU2412113C1

RU 2 610 772 C2

Авторы

Микитаев Абдулах Касбулатович

Хаширова Светлана Юрьевна

Мусов Исмел Вячеславович

Жанситов Азамат Асланович

Мамхегов Рустам Мухамедович

Шабаев Альберт Семенович

Даты

2017-02-15Публикация

2015-05-14Подача