СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ МЕТОДА ЭЛЕКТРОННО-ПАРАМАГНИТНОЙ РЕЗОНАНСНОЙ СПЕКТРОСКОПИИ Российский патент 2017 года по МПК G01N24/10 

Описание патента на изобретение RU2614365C1

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности веществ.

Известен способ спектрофотометрического определения антиоксидантной активности (АОА) основанный на способности ингибирования стабильного свободного радикала дифенилпикрилгидразила (ДФПГ) веществами с АО свойствами [Tuanjai N., Supalax S., Thawatchai Т., Wittaya N. New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems // J. Food Research International. 04/2011; 44(3): 798-806]. Сущность способа заключается в измерении снижения оптической плотности раствора ДФПГ в результате реакции с антиоксидантом при длине волны 528 нм. Значения АОА рассчитываются по концентрации анализируемого вещества, необходимого для реагирования с 50% ДФПГ.

Недостаток данного способа заключается в том, что результаты измерений выражаются не в стандартизированных единицах, а в относительных, точнее в эквивалентах галловой кислоты. Значения зависят от эталонного вещества, что не позволяет сравнивать АОА веществ, свойства которых определены в сравнении с разными эталонными веществами. Также к недостаткам данного метода можно отнести ограничения при исследовании окрашенных объектов.

Известен способ электронно-парамагнитной резонансной спектроскопии (ЭПР-спектроскопии) количественного определения АОА растворимого и молотого кофе [ V., A., F. Coffee as a source of antioxidants: An EPR study // J. Food Chemistry. 114 (2009) 859-868], основанный на использовании в качестве окислителей ряда стабильных свободных радикалов, в т.ч. ДФПГ, ЭПР-спектры которых, после смешения с веществами, обладающими АОА, снижают свою интенсивность. Количественную оценку АОА исследуемых образцов приводят в эквивалентах тролокса.

Недостаток способа заключается в том, что количественные значения АОА представляются в относительных единицах (эквивалентах тролокса), что не позволяет сравнить результат со значениями других методов. Также исходя из результатов данного способа, нельзя описать механизм протекания реакций между свободным радикалом и веществом, обладающим АОА.

Наиболее близким решением служит способ определения АОА растительных экстрактов и соков [Sanna D., Delogu G., Mulas M., Schirra M., Fadda A. Determination of free radical scavenging activity of plant extracts through DPPH assay: an EPR and UV-Vis study // J. Food Analytical Methods. 5 (2012) 759-766], заключающийся в том, что раствор ДФПГ смешивают с образцами (растительные экстракты, соки) обладающими АОА. Количественную оценку АОА проводят по изменению интенсивности ЭПР-спектров раствора ДФПГ, установленных до и после взаимодействия с анализируемыми образцами.

К недостаткам способа относится выражение значения АОА в относительных единицах ЕС50, то есть концентрации экстракта, необходимой для снижения начальной концентрации ДФПГ на 50%. Результаты данного способа не несут информацию о возможных механизмах протекания реакции между свободным радикалом и анализируемым веществом.

Задача настоящего изобретения состоит в преодолении недостатков известных способов и в создании нового способа, позволяющего повысить точность и экспрессность определения, а также позволяющего количественно в стандартизированных единицах установить антиоксидантную активность определяемого вещества в исследуемом образце и механизм взаимодействия АО со свободными радикалами ДФПГ.

Задача решается тем, что в способе определения антиоксидантной активности веществ методом ЭПР-спектроскопии спиртовой раствор стабильного радикала ДФПГ смешивают с раствором, содержащим вещество, обладающее антиоксидантной активностью (АОА), оценку антиоксидантной активности проводят по уменьшению числа парамагнитных центров стабильного радикала, рассчитанных из ЭПР-спектров до реакции и после полного прохождения химической реакции между радикалом и анализируемым веществом, в качестве меры антиоксидантной активности вещества используют моль эквиваленты в литре, полученные из разности количества парамагнитных частиц радикала до и после взаимодействия с АО, а значение АОА рассчитывают по формуле:

,

где АОА - антиоксидантная активность, М-экв;

CDPPH - концентрация ДФПГ в исходном растворе, М;

ns1 - начальное количество парамагнитных частиц ДФПГ, ед.

ns2 - количество парамагнитных частиц ДФПГ после взаимодействия с анализируемым веществом, ед.

Сущность заявляемого способа заключается в том, что спиртовой раствор ДФПГ имеет длительный стабильный сигнал в виде ЭПР-спектра, из которого можно выразить количество парамагнитных частиц. Число парамагнитных частиц свободного радикала ДФПГ снижается после добавления вещества обладающего АОА в результате протекания химических реакций в соответствии с концентрацией и количеством функциональных групп:

1. n DPPH+m Ar-OH→Ar-О+DPPH-H

2. Ar-О+DPPH→Ar-O-DPPH

3. Ar-О+Ar-О→Ar-О-О-Ar

где DPPH - стабильный радикал ДФПГ,

Ar-ОН - вещество с антиоксидантными свойствами,

Ar-О - промежуточный радикальный продукт взаимодействия АО с ДФПГ,

DPPH-H - восстановленная форма ДФПГ,

Ar-O-DPPH - молекулярный продукт взаимодействия АО с ДФПГ,

Ar-O-O-Ar - молекулярный продукт рекомбинации радикалов АО.

Определение антиоксидантной активности проводят по разности количества парамагнитных частиц стабильного свободного радикала, измеряемых до и после полного прохождения химических реакций (1-2) между свободным радикалом и анализируемым веществом. Определение проводят после завершения химической реакции, которое сопровождается снижением количества парамагнитных частиц свободного радикала после добавления анализируемого вещества. АОА в этом случае рассчитывают по формуле:

,

где АОА - антиоксидантная активность, М-экв;

CDPPH - концентрация ДФПГ в исходном растворе, М;

ns1 - начальное количество парамагнитных частиц ДФПГ, ед.;

ns2 - количество парамагнитных частиц ДФПГ после взаимодействия с анализируемым веществом, ед.

В качестве реагентов могут быть использованы стабильные катион радикалы, например 2,2'-дифенил-1-пикрилгидразил (ДФПГ). В качестве веществ, обладающих АОА, могут быть использованы индивидуальные антиоксиданты, биодобавки, соки, лекарственные экстракты, экстракты различных сортов чая и кофе.

В качестве протонных растворителей могут быть использованы метиловый и этиловый спирты. Также может быть использована смесь растворителей.

Емкость для измерений должна быть изготовлена из кварца или стекла. Указанные отличия существенны. В предложенном способе измеряется на прямую содержание свободного радикала в виде количества парамагнитных частиц. Использование в качестве единиц измерения антиоксидантной активности моль эквивалентов в литре позволяет сравнивать результаты, полученные различными методами. Концентрация исходного раствора стабильного радикала значительно больше концентрации вещества обладающего АОА в исследуемом образце, поэтому химическая реакция протекает быстро, что увеличивает экспрессность метода. Прямой расчет парамагнитных частиц позволяет устанавливать механизм взаимодействия радикала ДФПГ с АО.

В настоящее время из патентной и научно-технической литературы неизвестен способ определения антиоксидантной активности в заявляемой совокупности признаков.

На фиг. 1 представлена зависимость поглощаемой мощности переменного поля от напряженности внешнего магнитного поля. ЭПР-спектры ДФПГ: 1 - до взаимодействия с аскорбиновой кислотой; 2 - после взаимодействия с аскорбиновой кислотой.

На фиг. 2 представлена зависимость поглощаемой мощности переменного поля от напряженности внешнего магнитного поля. ЭПР-спектры ДФПГ: 3 - до взаимодействия с пирокатехином; 4 - после взаимодействия с пирокатехином.

На фиг. 3 представлена зависимость поглощаемой мощности переменного поля от напряженности внешнего магнитного поля. ЭПР-спектры ДФПГ: 5 - до взаимодействия с зеленым чаем; 6 - после взаимодействия с зеленым чаем.

На фиг. 4 представлена зависимость поглощаемой мощности переменного поля от напряженности внешнего магнитного поля. ЭПР-спектры ДФПГ: 7 - до взаимодействия с черным чаем; 8 - после взаимодействия с черным чаем.

Способ иллюстрируется следующими примерами.

Пример 1

Навеску ДФПГ растворили в этаноле с итоговой концентрацией 0,001М. Получили ЭПР-спектр приготовленного раствора ДФПГ. После математической обработки ЭПР-спектра получили значения количества парамагнитных частиц (ns1=1,95*1016 ед.) и концентрации свободного радикала ДФПГ (CDPPH=1,03*10-3 М).

Далее в 1 мл приготовленного раствора ДФПГ внесли 1*10-4 М спиртового раствора аскорбиновой кислоты. Получили ЭПР-спектр приготовленной смеси. Установившееся значение количества парамагнитных частиц после протекания реакции между свободным радикалом ДФПГ и аскорбиновой кислотой составляет ns2=1,38*1016 ед.

ЭПР-спектры свободного радикала ДФПГ до и после взаимодействия с аскорбиновой кислотой приведены на фиг. 1.

Антиоксидантную активность аскорбиновой кислоты рассчитывали по формуле:

,

где АОА - антиоксидантная активность аскорбиновой кислоты, М-экв;

CDPPH - концентрация свободного радикала ДФПГ в исходном растворе, М;

ns1 - начальное количество парамагнитных частиц свободного радикала ДФПГ;

ns2 - количество парамагнитных частиц свободного радикала ДФПГ после взаимодействия с аскорбиновой кислотой.

Расчет показал, что с учетом разбавления АОА аскорбиновой кислоты равна 3,01*10-4 М-экв, что свидетельствует протеканию предполагаемых реакций (1 и 2):

2 DPPH+АК→АК*+DPPH-H

АК+DPPH→АК-O-DPPH

где АК - аскорбиновая кислота,

АК - промежуточный радикальный продукт окисления аскорбиновой кислоты.

Получившееся значение АОА объясняется наличием двух функциональных групп в молекуле аскорбиновой кислоты, которые нейтрализуют две молекулы свободного радикала ДФПГ, а также протеканием реакции между продуктом окисления аскорбиновой кислоты и одной молекулой свободного радикала ДФПГ с образованием стабильного молекулярного продукта.

Пример 2

Навеску ДФПГ растворили в этаноле с итоговой концентрацией 0,001М. Получили ЭПР-спектр приготовленного раствора ДФПГ. После математической обработки ЭПР-спектра получили значения количества парамагнитных частиц (ns1=1,85*1016 ед.) и концентрации свободного радикала ДФПГ (CDPPH=0,98*10-3 М).

Далее в 1 мл приготовленного раствора ДФПГ внесли 1*10-4 М водного раствора пирокатехина. Получили ЭПР-спектр приготовленной смеси. Установившееся значение количества парамагнитных частиц после протекания реакции между свободным радикалом ДФПГ и пирокатехином составляет ns2=1,09*1016 ед.

ЭПР-спектры свободного радикала ДФПГ до и после взаимодействия пирокатехином приведены на фиг. 2.

Антиоксидантную активность пирокатехина рассчитывали по формуле:

,

где АОА - антиоксидантная активность пирокатехина, М-экв;

CDPPH - концентрация свободного радикала ДФПГ в исходном растворе, М;

ns1 - начальное количество парамагнитных частиц свободного радикала ДФПГ;

ns2 - количество парамагнитных частиц свободного радикала ДФПГ после взаимодействия с пирокатехином.

Расчет показал, что с учетом разбавления значение АОА пирокатехина составляет 4,03*10-4 М-экв, что свидетельствует о протекании предполагаемых реакций (1 и 2):

2 DPPH+ПК→ПК+2DPPH-H

ПК+DPPH→ПК-O-DPPH

где ПК - пирокатехин,

ПК - промежуточный радикальный продукт окисления пирокатехина.

Получившееся значение АОА объясняется наличием двух функциональных групп в молекуле пирокатехина, которые нейтрализуют две молекулы ДФПГ, а также протеканием реакции между продуктом окисления пирокатехина и двумя молекулами ДФПГ с образованием стабильных молекулярных продуктов.

Пример 3

Чайный пакетик Greenfield® (зеленый чай с мелиссой) заливали 100 мл кипятка, настаивали 6-8 мин. Пакетик вынимали, раствор доводили дистиллированной водой до метки (100 мл).

Навеску ДФПГ растворили в метаноле с итоговой концентрацией 0,001М. Полученный раствор измерили на ЭПР-спектрометре. После математической обработки ЭПР-спектра получили значения количества спинов (ns1=1,90*1016 ед.) и концентрации ДФПГ (CDPPH=1,00*10-3 М).

Далее в 1 мл раствора ДФПГ внесли водный раствор зеленого чая. Полученный раствор измерили на ЭПР-спектрометре. Установившееся значение количества спинов после протекания реакции между ДФПГ и зеленым чаем составляет ns2=1,15*1016 ед.

Спектры ДФПГ до и после взаимодействия с зеленым чаем, полученные на ЭПР-спектрометре, приведены на фиг. 3.

Антирадикальную активность зеленого чая рассчитывали по формуле:

,

где АОА - антиоксидантная активность зеленого чая, М-экв;

CDPPH - концентрация стабильного радикала ДФПГ в исходном растворе, М;

ns1 - начальное количество парамагнитных частиц ДФПГ;

ns2 - количество парамагнитных частиц ДФПГ после взаимодействия с зеленым чаем.

Расчет показал, что с учетом разбавления АОА зеленого чая составляет 3,97*10-4 М-экв.

Пример 4

Чайный пакетик Принцесса Нури® (черный чай классический) заливали 100 мл кипятка, настаивали 6-8 мин. Пакетик вынимали, раствор доводили дистиллированной водой до метки (100 мл).

Навеску ДФПГ растворили в метаноле с итоговой концентрацией 0,001М. Полученный раствор измерили на ЭПР-спектрометре. После математической обработки ЭПР-спектра получили значения количества спинов (ns1=1,85*1016 ед.) и концентрации ДФПГ (CDPPH=0,98*10-3 М).

Далее в 1 мл раствора ДФПГ внесли водный раствора черного чая. Полученный раствор измерили на ЭПР-спектрометре. Установившееся значение количества спинов после протекания реакции между ДФПГ и черным чаем составляет ns2=0,97*1016 ед.

Спектры ДФПГ до и после взаимодействия с зеленым чаем полученные на ЭПР-спектрометре приведены на фиг. 4.

Антиоксидантную активность черного чая рассчитывали по формуле:

,

где АОА - антиоксидантная активность черного чая, М-экв;

CDPPH - концентрация стабильного радикала ДФПГ в исходном растворе, М;

ns1 - начальное количество спинов ДФПГ;

ns2 - количество спинов ДФПГ после взаимодействия с черным чаем.

Расчет показал, что с учетом разбавления АОА черного чая равна 4,53*10-4 М-экв.

Таким образом, технический результат заключается в повышении точности, сокращении измерительных стадий, что приводит к повышению экспрессности определения, введения универсальных единиц измерения, возможности установления механизма реакции взаимодействия АО со свободным радикалом ДФПГ.

Похожие патенты RU2614365C1

название год авторы номер документа
Способ определения антиокислительной активности лекарственного растительного сырья и фитопрепаратов методом дифференциальной спектрофотометрии 2018
  • Тринеева Ольга Валерьевна
  • Рудая Маргарита Александровна
  • Сливкин Алексей Иванович
RU2712069C2
ПОТЕНЦИОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ ЕМКОСТИ С ИСПОЛЬЗОВАНИЕМ 2,2'-ДИФЕНИЛ-1-ПИКРИЛГИДРАЗИЛА 2022
  • Иванова Алла Владимировна
  • Герасимова Елена Леонидовна
  • Газизуллина Елена Ринатовна
  • Колбацкая София Андреевна
RU2791901C1
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕГРАЛЬНОЙ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ ПОЛИМЕТАКРИЛАТНОЙ МАТРИЦЫ 2009
  • Гавриленко Наталия Айратовна
  • Саранчина Надежда Васильевна
RU2391660C1
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ ЕМКОСТИ ВЕЩЕСТВ 2023
  • Иванова Алла Владимировна
  • Маркина Мария Геннадьевна
  • Герасимова Елена Леонидовна
  • Кириллова Виктория Ивановна
RU2825002C1
СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ ПРИРОДНЫХ СОЕДИНЕНИЙ В ЭКСПЕРИМЕНТЕ 2022
  • Логинов Павел Вадимович
  • Николаев Александр Аркадьевич
  • Мавлютова Елена Борисовна
  • Памешова Айман Кувайдуллаевна
  • Кузнецова Марина Геннадьевна
RU2801864C1
АНТИОКСИДАНТНЫЕ КОМПОЗИЦИИ И СПОСОБЫ ИХ ПРИМЕНЕНИЯ 2014
  • Дреер Фрэнк
RU2654804C2
Сухой экстракт из фукусовых водорослей, обладающий антиоксидантным действием, и способ его получения 2016
  • Облучинская Екатерина Дмитриевна
RU2650808C1
СПЕКТРОФОТОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ АНТИРАДИКАЛЬНОЙ АКТИВНОСТИ НИЗКОМОЛЕКУЛЯРНЫХ АНТИОКСИДАНТОВ В ЭКСТРАКТАХ ПИЩЕВЫХ И ЛЕКАРСТВЕННЫХ РАСТЕНИЙ 2009
  • Волков Владимир Анатольевич
  • Волкова Людмила Александровна
  • Пахомов Павел Михайлович
RU2423691C1
ВОЛЬТАМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ АКТИВНОСТИ АНТИОКСИДАНТОВ 2010
  • Лисецкий Владимир Николаевич
  • Баталова Валентина Николаевна
  • Лисецкая Татьяна Александровна
RU2426109C1
АНТИОКСИДАНТНОЕ И АНТИРАДИКАЛЬНОЕ СРЕДСТВО 2000
  • Рощин В.И.
  • Султанов Вагиф Султанович
RU2178303C1

Иллюстрации к изобретению RU 2 614 365 C1

Реферат патента 2017 года СПОСОБ ОПРЕДЕЛЕНИЯ АНТИОКСИДАНТНОЙ АКТИВНОСТИ С ИСПОЛЬЗОВАНИЕМ МЕТОДА ЭЛЕКТРОННО-ПАРАМАГНИТНОЙ РЕЗОНАНСНОЙ СПЕКТРОСКОПИИ

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц стабильного радикала, измеряемых до и после прохождения химической реакции частиц радикала с антиоксидантами (АО). Задача настоящего изобретения состоит в преодолении недостатков известных способов и в создании нового способа, позволяющего повысить точность и экспрессность определения, а также позволяющего количественно в стандартизированных единицах установить АОА определяемого вещества в исследуемом образце и механизм взаимодействия АО со свободными радикалами дифенилпикрилгидразила (ДФПГ). 4 ил., 4 пр.

Формула изобретения RU 2 614 365 C1

Способ определения антиоксидантной активности веществ методом ЭПР-спектроскопии, заключающийся в том, что спиртовой раствор стабильного радикала ДФПГ смешивают с раствором, содержащим вещество, обладающее антиоксидантной активностью (АОА), количественную оценку АОА проводят из ЭПР-спектров спиртового раствора ДФПГ, отличающийся тем, что оценку антиоксидантной активности проводят по уменьшению числа парамагнитных центров стабильного радикала, рассчитанных из ЭПР-спектров до реакции и после полного прохождения химической реакции между радикалом и анализируемым веществом, в качестве меры антиоксидантной активности вещества используют моль эквиваленты в литре, полученные из разности количества парамагнитных частиц радикала до и после взаимодействия с АО, а значение АОА рассчитывают по формуле:

,

где

AOA - антиоксидантная активность, М-экв;

CDPPH - концентрация ДФПГ в исходном растворе, M;

ns1 - начальное количество парамагнитных частиц ДФПГ, ед.;

ns2 - количество парамагнитных частиц ДФПГ после взаимодействия с анализируемым веществом, ед.

Документы, цитированные в отчете о поиске Патент 2017 года RU2614365C1

A
POPA et al
Antioxidant activity of medicinal tea evidenced by electron spin resonance / Rom
Journ
Phys., Bucharest, 2015, Vol
Способ получения молочной кислоты 1922
  • Шапошников В.Н.
SU60A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Приспособление для перевода трамвайных стрелок с вагона 1924
  • Бабенко В.Р.
SU1501A1
A.B
dos Santos et al
Antioxidant Properties of Plant Extracts: an EPR and DFT Comparative Study of the Reaction with DPPH, TEMPOL and Spin Trap DMPO / J
Braz
Chem
Soc., 2009, Vol
Прибор для промывания газов 1922
  • Блаженнов И.В.
SU20A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
А.А
Федосеева и др
Антиоксидантная активность настоев чая / Химия растительного сырья, 2008, No
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Устройство для разметки подлежащих сортированию и резанию лесных материалов 1922
  • Войтинский Н.С.
  • Квятковский М.Ф.
SU123A1

RU 2 614 365 C1

Авторы

Иванова Алла Владимировна

Петров Александр Сергеевич

Вежливцев Евгений Андреевич

Матерн Анатолий Иванович

Даты

2017-03-24Публикация

2015-12-31Подача