Способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных аккумуляторов Российский патент 2017 года по МПК H01M4/04 H01M4/32 H01M4/75 

Описание патента на изобретение RU2616584C1

Предлагаемое изобретение относится к области изготовления щелочных аккумуляторов с металловойлочными оксидно-никелевыми электродами.

В настоящее время наиболее перспективным типом положительных электродов щелочных источников тока являются оксидно-никелевые электроды, полученные металлизацией пористых полимерных или графитированных материалов с последующим заполнением полученной электропроводящей основы гидроксидом никеля в качестве активного вещества. Такие электроды не уступают по емкостным характеристикам электродам металлокерамического типа, не приводят к накоплению карбонатов в электролите аккумулятора, для их изготовления требуется меньшее количество никеля. Наиболее сложной частью технологии изготовления таких электродов является получение металлизированной пористой основы. Однако известная в настоящее время технология изготовления таких электродов сложна, требует применения дорогостоящих материалов и химикатов, сопровождается большим количеством экологически опасных сточных вод. Поэтому разработка простых методов нанесения достаточно толстых слоев металлов на пористую основу является актуальной.

Известен способ изготовления электродов химических источников тока [Патент РФ №2054758. МПК H01M 4/80, H01M 10/28, 1996], который заключается в изготовлении основы электрода химического источника тока. Согласно изобретению основу из нетканого волокнистого полимерного материала с обменной емкостью по катионам 0,5-6 мг-экв/г активируют насыщением ионами никеля с последующей обработкой водным раствором боргидрида щелочного металла при концентрации 0,1-1,2 г/л при температуре 15-70°C в течение 0,5-30 мин, после чего проводят химическую и гальваническую металлизацию.

Недостатком изобретения является то, что он требует нескольких подготовительных стадий перед химической и гальванической металлизацией. Причем качество каждой стадии сильно зависит от свойств нетканого волокнистого полимерного материала, в частности от его обменной емкости по катионам, что приводит разбросу в качестве уже готовых металлизированных электродов. Также данный материал является дорогим по сравнению с инертным нетканым полотном.

Известен способ изготовления оксидно-никелевых электродов химических источников тока [Патент РФ № 2407112, МПК H01M 4/16, 2009], который включает активацию графитированного вискозного материала насыщением ионами никеля из раствора сернокислого никеля при концентрации 50-320 г/л в течение 5-75 минут и последующим гальваническим никелированием.

Недостатками данного метода являются недостаточная механическая прочность электрода при его длительной работе и использование дорогого графитированного вискозного материала.

В качестве прототипа принят способ изготовления электродов щелочного аккумулятора [Заявка ФРГ N 4004106, кл. H01M 4/75, 1991], который состоит в активации нетканого полотна из полимерных, например полиолефиновых, волокон в растворе, содержащем олово и палладий; химическом никелировании полотна и гальваническом никелировании.

Недостатком способа является повышенный расход олова и дорогостоящего палладия из-за высокоразвитой металлизируемой поверхности нетканого полимера. Кроме того, при использовании стадии химической металлизации будет наблюдаться плохое прокрытие внутренних зон заготовки из-за экранирования их пузырьками водорода, выделяющимися при проведении данной стадии. При металлизации подготовленного таким образом полимерного волокнистого материала высока вероятность разложения раствора металлизации из-за случайно попавших в раствор с поверхности полимера частиц палладия.

Предлагаемое изобретение решает задачу нанесения металлического слоя на высокопористую диэлектрическую основу металловойлочного оксидно-никелевого электрода без использования драгоценных металлов и без протекания побочных реакций, продукты которой могут экранировать внутренние зоны поверхности, и упрощение технологии металлизации пористых полимерных материалов.

Технический результат заключается в получении равномерно металлизированной высокопористой основы металловойлочного оксидно-никелевого электрода, упрощении технологии при сохранении электропроводности первичного металлического слоя.

Указанный технический результат достигается тем, что в способе изготовления металловойлочных основ оксидно-никелевых электродов щелочных источников тока, включающем подготовку поверхности пористого полимерного материала, нанесение первичного слоя металла и его последующее покрытие гальваническим никелем, подготовку поверхности пористого полимерного материала осуществляют путем нанесения слоя полианилина при полимеризации анилина, а нанесение первичного слоя металла проводят путем гальванического меднения.

Нанесение слоя полианилина при полимеризации анилина осуществляют при концентрации анилина 4 – 20 г/л, персульфата аммония - 12 – 60 г/л, рН раствора менее 2,5, при соотношении содержания анилина к персульфату аммония в пределах 1:3 по массе. Условия получения полианилина взяты из [Сапурина И.Ю. Наноструктурированный полианилин и композиционные материалы на его основе. Диссертация на соискание ученой степени доктора химических наук. Санкт-Петербург. 2015, 292 с.] с учетом перевода мольных концентраций в весовые.

Способ осуществляют следующим образом: В качестве материала основы использовали высокопористый нетканый войлок из полипропилена. Заготовки помещали в свежеприготовленный раствор состава: анилин (4-20 г/л), персульфат аммония (12-60 г/л), серная кислота для доведения рН менее 2,5 при соотношении содержания анилина к персульфату аммония в пределах 1:3 по массе и выдерживали в нем 5-40 минут. В результате протекания окислительной полимеризации анилина полипропиленовые нити покрывались полианилином и приобретали темно-зеленый цвет. Покрытые полианилином основы промывали дистиллированной водой и сушили при температуре 20-90°С. Затем к основе прикрепляли токоподвод из никелевой или стальной никелированной фольги, меднили в стандартном сернокислом электролите меднения [Гальванотехника: Справ. изд. Ажогин Ф.Ф., Беленький М.А., Галль И.Е. и др. М.: Металлургия, 1987, 736 с. Стр.171] и никелировали в электролите матового никелирования [Гальванотехника: Справ. изд. Ажогин Ф.Ф., Беленький М.А., Галль И.Е. и др. М.: Металлургия, 1987, 736 с. Стр.188].

Пример 1. Заготовки из высокопористого нетканого полипропиленового войлока поместили в 200 мл свежеприготовленного раствора состава: анилин (4 г/л), персульфат аммония (12 г/л), серная кислота до рН менее 2,5. После выдержки основы в течение 10 минут заготовки приобрели темно-зеленый цвет. Промывку вели до окончания шламления. Промытые основы сушили на воздухе. Сопротивление сухой заготовки составило 0,8 – 1,0 кОм. Сопротивление сухой заготовки определяли омметром. К основе прикрепляли токоподвод из никелевой фольги. После чего проводили гальваническое меднение основы в стандартном сернокислом электролите меднения, в результате чего поверхностные и глубинные зоны основы полностью прокрывалась медью. Равномерность покрытия медью оценивали визуально. Далее проводили электрохимическое никелирование основы в электролите матового никелирования для нанесения на поверхность омедненных волокон основы необходимого слоя никеля (толщина слоя никеля 5 – 7 мкм).

Пример 2. Отличающийся от примера 1 тем, что для нанесения полианилина использовался раствор состава: анилин (20 г/л), персульфат аммония (60 г/л), серная кислота до рН менее 2,5. Сопротивление основы, покрытой полианилином, составило 0,4 – 0,6 кОм. При меднении и последующем никелировании был получен результат, аналогичный примеру 1.

Исходя из полученных результатов увеличение концентрации анилина более 20 г/л и персульфата аммония свыше 60 г/л приводит к увеличению шлама в растворе и возрастанию расхода химикатов. Уменьшение концентрации анилина менее 4 г/л и персульфата аммония менее 12 г/л не позволяет осадить медное покрытие равномерно по объему полимерной основы.

Проведенный анализ и эксперименты свидетельствуют о том, что предлагаемое решение соответствует критериям новизны, изобретательского уровня и промышленной применимости.

Таким образом, предлагаемый способ позволяет исключить сложные многостадийные операции подготовки пористых полимерных основ к никелированию при сохранении равномерности толщины и высокой электропроводности медного слоя.

Похожие патенты RU2616584C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ОСНОВЫ ЭЛЕКТРОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА ИЗ УГЛЕРОДНОГО ВОЙЛОКА С ИСПОЛЬЗОВАНИЕМ ПЕРЕМЕННОГО АСИММЕТРИЧНОГО ТОКА 2012
  • Галушкин Николай Ефимович
  • Язвинская Наталья Николаевна
  • Галушкин Дмитрий Николаевич
RU2510548C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОСНОВЫ ЭЛЕКТРОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА ИЗ УГЛЕРОДНОЙ ТКАНИ С ИСПОЛЬЗОВАНИЕМ ПЕРЕМЕННОГО АСИММЕТРИЧНОГО ТОКА 2017
  • Язвинская Наталья Николаевна
  • Галушкин Николай Ефимович
  • Галушкин Дмитрий Николаевич
RU2672854C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА ДЛЯ ЩЕЛОЧНОГО АККУМУЛЯТОРА 2009
  • Волынский Вячеслав Виталиевич
  • Тюгаев Вячеслав Николаевич
  • Волынская Валентина Васильевна
  • Гришин Сергей Владимирович
RU2407112C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛОКОННОГО ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА ЩЕЛОЧНОГО НИКЕЛЬ-КАДМИЕВОГО АККУМУЛЯТОРА 2011
  • Волынский Вячеслав Виталиевич
  • Тюгаев Вячеслав Николаевич
  • Гришин Сергей Владимирович
  • Клюев Владимир Владимирович
  • Чипига Игорь Викторович
  • Якубовская Екатерина Владимировна
RU2482569C1
ГАЛЬВАНОПЛАСТИЧЕСКИЙ СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЖНО-РЕЛЬЕФНЫХ ЭЛЕМЕНТОВ АНТЕННО-ФИДЕРНЫХ УСТРОЙСТВ 2012
  • Исаев Александр Валерьевич
  • Михаленко Михаил Григорьевич
RU2472872C1
Способ получения покрытия из порошка на основе оксида графена и/или полианилина методом электроосаждения 2023
  • Мясоедова Татьяна Николаевна
  • Михайлова Татьяна Сергеевна
  • Яловега Галина Эдуардовна
RU2817646C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА 2009
  • Морозова Анастасия Петровна
  • Селиванов Валентин Николаевич
RU2406185C1
СПОСОБ МЕТАЛЛИЗАЦИИ ДИЭЛЕКТРИКОВ 1990
  • Бессонова Е.М.
  • Китаев Г.А.
RU2061096C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОСНОВЫ ЭЛЕКТРОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА 1992
  • Степанов Алексей Борисович
  • Варакин Игорь Николаевич
RU2054758C1
Способ нанесения электропроводного защитного покрытия на алюминиевые сплавы 2023
  • Дуюнова Виктория Александровна
  • Фомина Марина Александровна
  • Демин Семен Анатольевич
RU2817277C1

Реферат патента 2017 года Способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных аккумуляторов

Изобретение относится к области изготовления щелочных аккумуляторов с металловойлочными оксидно-никелевыми электродами. Предложенный способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных источников тока включает подготовку поверхности пористого полимерного материала путем нанесения первичного слоя металла с последующем покрытием гальваническим никелем, при этом подготовку поверхности пористого полимерного материала осуществляют путем нанесения слоя полианилина при полимеризации анилина, после чего нанесение первичного слоя металла проводят путем гальванического меднения. Получение равномерно металлизированной высокопористой основы металловойлочного оксидно-никелевого электрода при сохранении равномерности толщины и высокой электропроводности медного слоя является техническим результатом изобретения. 1 з.п. ф-лы, 2 прим.

Формула изобретения RU 2 616 584 C1

1. Способ изготовления металловойлочных основ оксидно-никелевых электродов щелочных источников тока, включающий подготовку поверхности пористого полимерного материала, нанесение первичного слоя металла и его последующее покрытие гальваническим никелем, отличающийся тем, что подготовку поверхности пористого полимерного материала осуществляют путем нанесения слоя полианилина при полимеризации анилина, а нанесение первичного слоя металла проводят путем гальванического меднения.

2. Способ по п.1, отличающийся тем, что нанесение слоя полианилина при полимеризации анилина осуществляют при концентрации анилина 4-20 г/л, персульфата аммония – 12-60 г/л, серной кислоты – до рН менее 2,5 при соотношении содержания анилина к персульфату аммония в пределах 1:3 по массе.

Документы, цитированные в отчете о поиске Патент 2017 года RU2616584C1

DE 4004106 A1, 22.08.1991
СПОСОБ ИЗГОТОВЛЕНИЯ ОКСИДНО-НИКЕЛЕВОГО ЭЛЕКТРОДА ДЛЯ ЩЕЛОЧНОГО АККУМУЛЯТОРА 2009
  • Волынский Вячеслав Виталиевич
  • Тюгаев Вячеслав Николаевич
  • Волынская Валентина Васильевна
  • Гришин Сергей Владимирович
RU2407112C1
СПОСОБ ИЗГОТОВЛЕНИЯ ОСНОВЫ ЭЛЕКТРОДА ХИМИЧЕСКОГО ИСТОЧНИКА ТОКА 1992
  • Степанов Алексей Борисович
  • Варакин Игорь Николаевич
RU2054758C1
DE 102012203057 A1, 29.08.2013
CN 101710616 A, 19.05.2010
US 2011206974 A1, 25.08.2011.

RU 2 616 584 C1

Авторы

Михаленко Михаил Григорьевич

Гунько Юрий Леонидович

Козина Ольга Леонидовна

Мюнц Александр Андреевич

Кузякин Николай Олегович

Лоскутов Алексей Борисович

Даты

2017-04-18Публикация

2015-12-22Подача