ГАЛЬВАНОПЛАСТИЧЕСКИЙ СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЖНО-РЕЛЬЕФНЫХ ЭЛЕМЕНТОВ АНТЕННО-ФИДЕРНЫХ УСТРОЙСТВ Российский патент 2013 года по МПК C25D1/00 

Описание патента на изобретение RU2472872C1

Изобретение относится к гальванопластике и может быть использовано для изготовления элементов антенно-фидерных устройств повышенной сложности.

Известны способы изготовления элементов антенно-фидерных устройств методом гальванопластики, с применением растворимых форм из алюминия, которые готовят путем обточки, шлифования и полирования, с последующим наращиванием гальванического никеля из сульфаматного электролита и удалением формы в щелочном растворе [1, 2].

Одним из достоинств применения алюминия как материала для изготовления форм является высокая точность изготовления и чистота поверхности наращиваемого изделия. Однако при опускании алюминиевой формы в сульфаматный электролит никелирования, на поверхности алюминия происходит контактное осаждение никеля и растворение алюминия. Эти процессы протекают за счет работы гальванической пары, в которой наиболее активный металл алюминий окисляется с переходом ионов алюминия в раствор, а ионы никеля восстанавливаются на алюминиевой основе. Гальваническая пара может работать короткое время до включения катодного тока. Однако контактно осажденный никелевый осадок приводит к снижению класса чистоты поверхности получаемой гальванической копии, ухудшает структуру получаемого методом гальванопластики никелевого осадка и повышает внутренние напряжения в нем.

Для снижения эффективности работы этой гальванической пары необходимо уменьшить разность потенциалов между никелем и алюминием и снизить ток анодного растворения алюминия. Для этого необходимо на алюминиевую поверхность нанести защитную пассивную пленку. Компромиссный потенциал алюминия при этом сместится в положительную сторону, и разность потенциалов гальванической пары никель-алюминий уменьшится (фиг.1, кривая 3).

Такую обработку алюминия можно проводить различными способами.

1. Известен способ пассивирования алюминиевых деталей в ультразвуковом поле [3]. Однако пассивирование по данному методу требует наличия ультразвуковой установки, что повышает стоимость обработки. Сам процесс пассивирования носит сложный характер: необходимо учитывать изменение структуры пассивной пленки, изменение свойств растворов, влияющих на кинетику окисления, и другие факторы.

2. Цинкатная обработка, заключающаяся в нанесении на поверхность алюминия из раствора подслоя контактно выделяемого цинка [3]. В основном для цинкатной обработки применяют щелочные растворы состава (г/л): ZnO 60-70, NaOH 250-420. Использование щелочных растворов может привести к подтравливанию, ухудшению класса чистоты алюминиевой формы, а также отклонению от заданных размеров.

3. Пассивирование алюминия можно проводить электрохимически, нанося защитную пленку на металл под анодной нагрузкой из растворов серной и фосфорной кислот [3]. Составы и режимы оксидирования следующие:

первый раствор: фосфорная кислота -10÷25%, t=18÷35°С, плотность анодного тока 1,2÷3,0 А/дм2;

второй раствор: серная кислота 180÷200 г/л, t=8÷15°С, плотность анодного тока 1,2÷3,0 А/дм2.

К недостаткам данного способа можно отнести необходимость источников постоянного тока и усложнение операции пассивации.

В гальванопластическом способе изготовления сложнорельефных деталей со щелевой структурой [4], взятом за прототип, используют оправки из алюминия П-образной формы, которые перед нанесением на них никелевого покрытия подвергают операции обезжиривания, обработке в концентрированной азотной кислоте.

Недостаток известного способа [4] состоит в том, что при обработке поверхности алюминия в концентрированной азотной кислоте, которая является высокоагрессивным раствором пассивации, происходит растравливание поверхности алюминия и образование на ней точечных дефектов, что в свою очередь снижает класс чистоты поверхности получаемой копии. Необходимо найти менее агрессивные и менее концентрированные растворы, в которых можно было бы формировать оксидную пленку на поверхности алюминия, на которой осаждался плотный никелевый осадок.

Оксидные пассивные пленки на поверхности алюминия можно получить, обрабатывая его в растворах таких окислителей, как KMnO4, K2Cr2O7, (NH4)2S2O8. При обработке алюминия в растворе перманганата калия состава (г/л): KMnO4 - 80; Н3ВО3 - 30 на поверхности алюминия образуется защитная пленка желтоватого цвета. Однако при осаждении на эту пленку никеля из сульфаматного электролита никелирования образуется зеленый рыхлый осадок и происходит бурное выделение водорода. Это обусловлено, по-видимому, тем, что в оксидную пленку на алюминии включается диоксид марганца, значительно снижающий перенапряжение выделения водорода и отрицательно влияющий на структуру никелевого осадка. Ясно, что применять такую обработку нельзя. Аналогичные результаты были получены при обработке алюминия в растворе бихромата калия. При нанесении никеля на такую алюминиевую основу получали рыхлый, зеленого цвета гальванический осадок, а никелирование протекало с бурным выделением водорода.

Техническим результатом заявляемого способа является получение на формах из алюминия и его сплавов плотного, светлого гальванического никелевого покрытия высокого класса чистоты.

Технический результат достигается тем, что в гальванопластическом способе изготовления сложно-рельефных элементов антенно-фидерных устройств с использованием форм из алюминия или его сплавов, включающем гальваническое нанесение на формы никеля с последующим их удалением, поверхность формы из алюминия или его сплавов перед процессом нанесения никеля химически пассивируют в растворе персульфата аммония 35-40 г/л и борной кислоты 25-30 г/л, при температуре 18-25°С в течение 1 минуты.

На фигуре 1 представлены парциальные потенциостатические кривые (зависимость плотности тока от потенциала), где

1 - анодного окисления алюминия в растворе состава (г/л): K2SO4 - 350; KCl - 14; Н3ВО3 - 30; pH 3,5; t=40°С без предварительной обработки в персульфатном растворе;

2 - катодного восстановления никеля из сульфаматного электролита никелирования при t=40°С;

3 - анодного окисления алюминия с предварительной обработкой в персульфатном растворе состава (г/л): (NH4)2S2O8 - 40; Н3ВО3 - 30; pH 3,5 в течение 1 минуты.

Компромиссный потенциал алюминия имеет значение, близкое к -0,5 В относительно нормального водородного электрода, что значительно положительнее стандартного потенциала алюминия (-1,67 В). Это обусловлено тем, что на поверхности алюминия присутствует защитная оксидная пленка. Заметный рост тока анодного растворения алюминия наблюдается при потенциалах положительнее -0,4 В (фиг.1 кривая 1).

Кривая катодного восстановления ионов никеля из сульфаматного электролита никелирования представлена на фигуре 1 кривая 2. Заметный рост катодного тока наблюдается при потенциалах отрицательнее -0,4 В. Пересечение кривой анодного окисления алюминия и кривой катодного восстановления никеля наблюдается при компромиссном потенциале -0,4 В. Ток, характеризующий работу гальванической пары никель алюминий, имеет значения 0,08 мА/см2. За счет этого тока и происходит растворение алюминия и восстановление ионов никеля. При обработке поверхности алюминия в персульфатном растворе компромиссный потенциал алюминия сместился в положительную сторону и значительно уменьшилась разность потенциалов гальванической пары никель-алюминий (фиг.1 кривая 3). Ток, характеризующий работу гальванической пары никель-алюминий, имеет значение 0,01 мА/см2.

Пассивация алюминия в персульфатном растворе обусловлена протеканием следующих реакций:

(NH4)2S2O8+2H2O=2NH4OH+H2S2O8

H2S2O8+2H2O=2H2SO4+H2O2

3H2O2+Al=Al2O3+3H2O

Предлагаемый способ осуществляется следующим образом.

1. Обезжиривают формы из алюминия или его сплавов моющим средством (например, «Прогресс-2000).

2. Пассивируют формы в растворе персульфата аммония и борной кислоты состава, г/л:

(NH4)2S2O8 35-40;

Н3ВО3 25-30;

pH 3-4, при температуре 18-25°С в течение 1 минуты.

3. Наносят гальванически никель из сульфаматного электролита состава, г/л:

Сульфамат никеля 300-400 Никель хлористый 6-водный 12-15 Борная кислота 30-35 Додецилсульфат натрия 0,05-0,1

pH=2-2,2, температура 45-50°С, плотность тока 3-5 А/дм2.

4. Удаляют алюминий путем вытравливания в растворе щелочи состава: NaOH 150-200 г/л.

При гальваническом нанесении никеля на алюминий, обработанный в предлагаемом растворе, получался светлый, плотный гальванический осадок. Однако не при всех концентрациях персульфата аммония получаются приемлемые для никелирования защитные алюминиевые пленки. Если проводить образование защитных пленок на алюминии из более концентрированных растворов персульфата аммония, то при последующем никелировании алюминия образуется рыхлое никелевое покрытие.

Литература

1. Вансановская К.М., Волянюк Г.А. Промышленная гальванопластика. Л.: Машиностроение, 1986, с.77.

2. Садаков Г.А. Гальванопластика. М.: Машиностроение, 1987, с.271.

3 Ф.Ф.Ажогин, М.А.Беленький, И.Е.Галль и др. Гальванотехника. Справочное издание под редакцией A.M.Гинберга, А.Ф.Иванова, Л.Л.Кравченко. М.: Металлургия, 1987, с 736.

4 Патент РФ №2254403, МПК C25D 1/00. «Гальванопластический способ изготовления сложнорельефных деталей со щелевой структурой». Опубл. 20.06.2005., Бюл. №17.

Похожие патенты RU2472872C1

название год авторы номер документа
ГАЛЬВАНОПЛАСТИЧЕСКИЙ СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЖНОРЕЛЬЕФНЫХ ДЕТАЛЕЙ СО ЩЕЛЕВОЙ СТРУКТУРОЙ 2004
  • Жирнова Т.А.
  • Исаев А.В.
  • Королева Г.В.
RU2254403C1
Способ нанесения никелевых покрытий на алюминиевые сплавы 2017
  • Девяткина Татьяна Игоревна
  • Лучнева Светлана Игоревна
  • Борисова Александра Евгеньевна
  • Рогожин Вячеслав Вячеславович
  • Михаленко Михаил Григорьевич
  • Ивашкин Евгений Геннадьевич
RU2661695C1
СПОСОБ ИЗГОТОВЛЕНИЯ МИНИАТЮРНОГО ТОПЛИВНОГО ЭЛЕМЕНТА С ТВЕРДЫМ ПОЛИМЕРНЫМ ЭЛЕКТРОЛИТОМ 2007
  • Гофман Яков Аронович
  • Гаврилов Александр Андреевич
  • Фоменко Наталья Сергеевна
  • Гаврилов Евгений Андреевич
RU2333576C1
ЭЛЕКТРОЛИТ И СПОСОБ НИКЕЛИРОВАНИЯ ИЗДЕЛИЙ ИЗ АЛЮМИНИЯ И ЕГО СПЛАВОВ 2003
  • Симунова С.С.
  • Ершова Т.В.
RU2259429C2
ГАЛЬВАНОПЛАСТИЧЕСКИЙ СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЖНОРЕЛЬЕФНЫХ ДЕТАЛЕЙ СО СКВОЗНЫМИ КАНАЛАМИ 2006
  • Исаев Александр Валерьевич
  • Королева Галина Владимировна
  • Почтин Петр Алексеевич
RU2320783C1
Способ нанесения электропроводного защитного покрытия на алюминиевые сплавы 2023
  • Дуюнова Виктория Александровна
  • Фомина Марина Александровна
  • Демин Семен Анатольевич
RU2817277C1
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО НИКЕЛИРОВАНИЯ 2009
  • Толкачев Николай Иванович
RU2431000C2
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДОВ С ПОРИСТЫМ НИКЕЛЕВЫМ ПОКРЫТИЕМ ДЛЯ ЩЕЛОЧНЫХ ЭЛЕКТРОЛИЗЕРОВ ВОДЫ 2013
  • Кулешов Николай Васильевич
  • Кулешов Владимир Николаевич
  • Удрис Елена Яновна
RU2534014C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ ИЗ ЛИТЕЙНЫХ СПЛАВОВ АЛЮМИНИЯ 1992
  • Помогаев Василий Михайлович
RU2037927C1
Способ гальванопластического изготовления полых изделий с наружной оболочкой 1988
  • Нагирный Виктор Михайлович
  • Миловский Евгений Виргиньевич
  • Приходько Людмила Александровна
  • Говорова Ирина Александровна
  • Кочкин Евгений Владимирович
SU1657543A1

Иллюстрации к изобретению RU 2 472 872 C1

Реферат патента 2013 года ГАЛЬВАНОПЛАСТИЧЕСКИЙ СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЖНО-РЕЛЬЕФНЫХ ЭЛЕМЕНТОВ АНТЕННО-ФИДЕРНЫХ УСТРОЙСТВ

Изобретение относится к гальванопластике и может быть использовано для изготовления элементов антенно-фидерных устройств повышенной сложности. Гальванопластический способ включает использование форм из алюминия или его сплавов и гальваническое нанесение на формы никеля с последующим их удалением, при этом перед процессом нанесения никеля поверхность формы из алюминия или его сплавов химически пассивируют в растворе персульфата аммония 35-40 г/л и борной кислоты 25-30 г/л при температуре 18-25°С в течение 1 минуты. Технический результат - получение на формах из алюминия и его сплавов плотного, светлого гальванического никелевого покрытия высокого класса чистоты. 1 ил., 1 пр.

Формула изобретения RU 2 472 872 C1

Гальванопластический способ изготовления сложно-рельефных элементов антенно-фидерных устройств, включающий использование форм из алюминия или его сплавов и гальваническое нанесение на формы никеля с последующим их удалением, отличающийся тем, что перед процессом нанесения никеля поверхность формы из алюминия или его сплавов химически пассивируют в растворе персульфата аммония 35-40 г/л и борной кислоты 25-30 г/л при температуре 18-25°С в течение 1 мин.

Документы, цитированные в отчете о поиске Патент 2013 года RU2472872C1

ГАЛЬВАНОПЛАСТИЧЕСКИЙ СПОСОБ ИЗГОТОВЛЕНИЯ СЛОЖНОРЕЛЬЕФНЫХ ДЕТАЛЕЙ СО ЩЕЛЕВОЙ СТРУКТУРОЙ 2004
  • Жирнова Т.А.
  • Исаев А.В.
  • Королева Г.В.
RU2254403C1
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ДЕТАЛЕЙ ИЗ АЛЮМИНИЯ И ЕГО СПЛАВОВ ПЕРЕД НАНЕСЕНИЕМ ГАЛЬВАНОПОКРЫТИЙ 1993
  • Батищев А.Н.
  • Новиков А.Н.
  • Заплатников А.И.
RU2082837C1
Способ подготовки алюминиевых сплавов перед серебрением 1980
  • Нагирный Виктор Михайлович
  • Луговая Валентина Александровна
  • Цыганенко Галина Александровна
SU931815A1
US 7250101 B2, 31.07.2007.

RU 2 472 872 C1

Авторы

Исаев Александр Валерьевич

Михаленко Михаил Григорьевич

Даты

2013-01-20Публикация

2012-01-11Подача