Способ определения усредненного вектора скорости ветра Российский патент 2017 года по МПК G01W1/08 

Описание патента на изобретение RU2617020C1

Способ определения усредненного вектора скорости ветра относится к метеорологии и предназначен для измерения метеовеличин в вертикальном разрезе атмосферы в определенной географической точке.

Известны способы и устройства для определения скорости и направления ветра путем использования воздушных шаров или радиозондов. (Патент на изобретение РФ №2101736, МПК G01W 1/02, 01.10.1998, патенты на полезные модели №103195, МПК G01W 1/08, 01.12.2010, №92204, МПК G01W 1/02, 10.03.2010).

Недостатком таких технических решений является невозможность проведения измерений в заранее выбранных географических координатах вследствие неуправляемости зонда.

Наиболее близким является способ, описанный в устройстве для определения скорости и направления ветра на заданной высоте, который выбран в качестве прототипа. Способ заключается в запуске зонда в интересующую область пространства на заданную высоту с помощью специальных средств, обеспечение движения зонда в горизонтальном направлении по ветру и регистрацию скорости и направления ветра с помощью специальных средств. Зонд снабжен системой спутниковой навигации, электронным гироскопом, электронным магнитным компасом. (Патент РФ 98256, МПК G01W 1/00, 27.04.2010).

Недостатком прототипа является невозможность выбора координат точки проведения измерений.

Задачей изобретения является расширение функциональных возможностей, повышение точности позиционирования зонда.

Технический результат - расширение функциональных возможностей, а именно возможность измерения усредненного вектора скорости ветра в вертикальном разрезе атмосферы.

Технический результат достигается тем, что, как и в известном способе определения усредненных значений скорости и направления ветра, запускают зонд в интересующую область пространства на заданную высоту, направляя информацию на радиоприемную систему, при этом зонд снабжен системой спутниковой навигации, электронным гироскопом, электронным магнитным компасом.

В отличие от известного способа, в качестве зонда используют беспилотный летательный аппарат (БПЛА), способный зависать в воздухе, снабженный датчиками давления, влажности, температуры и потребляемой двигателями мощности, по прибытию в требуемую точку БПЛА переводят в режим удержания географических координат, равномерного движения по вертикали, фиксируют наклон вектора тяги, потребляемую двигателями мощность, атмосферное давление, температуру и влажность воздуха, зафиксированные данные передают на наземную станцию управления для расчета усредненного вектора скорости ветра.

Режим удержания координат проиллюстрирован на фиг. 1. Он характеризуется равновесием горизонтальной (Fтx) проекции тяги (Fт) БПЛА, находящегося в наклонном положении, и силы Fв, с которой ветер воздействует на БПЛА (см. фиг. 1). При этом БПЛА может перемещаться по вертикали или находиться на неизменной высоте, в зависимости от соотношения между вертикальной проекцией тяги и весом (Fg) БПЛА.

Наклон вектора тяги БПЛА в описанном выше режиме однозначно соответствует усредненному движению ветра в данной точке пространства при известных значениях атмосферного давления, влажности и температуры, а также суммарной мощности, развиваемой двигателями БПЛА. Для определения вектора средней скорости ветра необходимо использовать заранее измеренную при калибровке системы зависимость между наклоном БПЛА α, вектором скорости ветра Fв, углом поворота корпуса БПЛА ϕ, атмосферным давлением Р, влажностью ψ, температурой Т и суммарной мощностью W, развиваемой двигателями БПЛА:

При одновременном запуске нескольких БПЛА в разных точках можно получить объемную модель метеопроцессов в рассматриваемой области пространства. Также использование нескольких БПЛА, одновременно сканирующих равноподеленные между ними участки единого вертикального разреза, может служить для сокращения времени регистрации быстропротекающих процессов в атмосфере, при этом время получения вертикального разреза уменьшается в N раз, где N - количество одновременно запускаемых БПЛА.

Способ осуществляется следующим образом.

1. БПЛА, способный зависать в воздухе, имеющий спутниковую систему навигации, гироскоп, магнитный компас, датчики потребляемой двигателями суммарной мощности, атмосферного давления, влажности и температуры, помещают в аэродинамическую трубу и определяют зависимость между наклоном БПЛА α, вектором скорости ветра FВ, углом поворота корпуса БПЛА ϕ, атмосферным давлением Р, влажностью ψ, температурой Т и суммарной мощностью W, развиваемой двигателями БПЛА в виде:

2. Запускают БПЛА в интересующую область пространства.

3. Переводят БПЛА в режим удержания географических координат и равномерного движения по вертикали. Начинают фиксацию показаний бортовых навигационных приборов и датчиков.

4. Используя заранее измеренную при калибровке системы зависимость наклона БПЛА от вектора скорости ветра, давления, влажности и температуры, определяют направление и величину трехмерного вектора средней скорости ветра в каждой точке траектории движения БПЛА.

5. Исходные данные передают на наземную станцию управления по штатному радиоканалу (телеметрия).

Можно перемещать БПЛА по вертикали для непрерывных измерений в вертикальном разрезе атмосферы, либо удерживать БПЛА на месте для точечных измерений, либо осуществить приземление БПЛА для замены аккумуляторных батарей.

Данный алгоритм может выполняться автоматически, по программе.

Измеренные величины передаются наземной станции управления с телеметрией и анализируются автоматически в режиме реального времени.

Таким образом может быть рассчитан усредненный вектор скорости ветра на вертикальном разрезе.

Возможен вариант, в котором измеряемые величины записываются на сменный носитель, устанавливаемый на БПЛА. Расчеты ведутся после посадки БПЛА.

Дополнительные достоинства: независимость от состояния облачности, тумана; произвольный выбор точки измерения; управляемый возврат зонда в точку старта по завершении измерений.

Похожие патенты RU2617020C1

название год авторы номер документа
Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата 2016
  • Кураков Сергей Анатольевич
  • Куракова Полина Сергеевна
  • Куракова Ольга Алексеевна
RU2632270C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕРТИКАЛЬНЫХ РАСПРЕДЕЛЕНИЙ СКОРОСТИ И НАПРАВЛЕНИЯ ВЕТРА 2018
  • Ситников Николай Михайлович
  • Чекулаев Игорь Иванович
  • Акмулин Дмитрий Валерьевич
  • Горелик Андрей Габриэлович
  • Ситникова Вера Ивановна
  • Ширшов Николай Васильевич
RU2692736C1
Способ определения усредненного вектора скорости ветра с помощью беспилотного летательного аппарата 2018
  • Кочин Александр Васильевич
  • Трещалин Андрей Петрович
RU2695698C1
СПОСОБ ОПРЕДЕЛЕНИЯ УСРЕДНЕННЫХ ЗНАЧЕНИЙ ГОРИЗОНТАЛЬНОЙ И ВЕРТИКАЛЬНОЙ СОСТАВЛЯЮЩИХ СКОРОСТИ ВЕТРА И ЕГО НАПРАВЛЕНИЯ 2016
  • Кураков Сергей Анатольевич
  • Куракова Полина Сергеевна
  • Куракова Ольга Алексеевна
RU2650094C2
СПОСОБ ОПРЕДЕЛЕНИЯ УСРЕДНЕННЫХ ЗНАЧЕНИЙ ГОРИЗОНТАЛЬНОЙ И ВЕРТИКАЛЬНОЙ СОСТАВЛЯЮЩИХ СКОРОСТИ ВЕТРА И ЕГО НАПРАВЛЕНИЯ 2016
  • Кураков Сергей Анатольевич
  • Куракова Полина Сергеевна
  • Куракова Ольга Алексеевна
RU2616352C1
Способ определения усредненных значений метеорологических параметров в пограничном слое атмосферы 2019
  • Байдуков Александр Кузьмич
  • Кузнецова Юлия Алексеевна
  • Анистратенко Сергей Сергеевич
  • Кобцев Дмитрий Юрьевич
  • Шабунин Сергей Иванович
  • Малов Владимир Александрович
  • Орлов Сергей Дмитриевич
RU2727315C1
СПОСОБ ОПРЕДЕЛЕНИЯ УСРЕДНЕННЫХ ЗНАЧЕНИЙ СКОРОСТИ И НАПРАВЛЕНИЯ ВЕТРА 2015
  • Кураков Сергей Анатольевич
RU2600519C1
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ И НАПРАВЛЕНИЯ ВЕТРА С ИСПОЛЬЗОВАНИЕМ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2020
  • Каплин Александр Юрьевич
  • Степанов Михаил Георгиевич
RU2744772C1
Способ определения высоты шероховатости поверхности водоема 2022
  • Байдуков Александр Кузьмич
  • Кузнецова Юлия Алексеевна
  • Сторож Максим Васильевич
RU2796383C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ ВЕТРА И ТЕМПЕРАТУРЫ ВОЗДУХА В АТМОСФЕРНОМ ПОГРАНИЧНОМ СЛОЕ 2016
  • Корольков Владимир Александрович
RU2634804C2

Иллюстрации к изобретению RU 2 617 020 C1

Реферат патента 2017 года Способ определения усредненного вектора скорости ветра

Изобретение относится к измерительной технике и может найти применение для определения усредненного вектора скорости ветра. Технический результат – расширение функциональных возможностей. Для этого осуществляют запуск беспилотного летательного аппарата (БПЛА) мультироторного типа в заранее выбранную точку с заданными географическими координатами. Переводят БПЛА в режим удержания координат, равномерного движения по вертикали и, используя заранее измеренную эмпирическую зависимость, по наклону вектора тяги БПЛА, потребляемой двигателями мощности, атмосферному давлению, температуре и влажности воздуха определяют направление и скорость ветра в выбранной точке либо в вертикальном разрезе. 1 ил.

Формула изобретения RU 2 617 020 C1

Способ определения усредненного вектора скорости ветра, по которому в интересующую область пространства запускают зонд, снабженный навигационными приборами, отличающийся тем, что в качестве зонда используют беспилотный летательный аппарат (БПЛА) с известными калибровочными характеристиками влияния ветра на наклон вектора тяги, способный зависать в заданной точке пространства и снабженный датчиками наклона, температуры, давления, влажности и потребляемой двигателями мощности, который при достижении им нужной точки с заранее выбранными географическими координатами переводят в режим удержания географических координат, равномерного движения по вертикали, измеряют наклон вектора тяги БПЛА, потребляемую двигателями мощность, атмосферное давление, температуру и влажность воздуха, после чего по калибровочным характеристикам определяют направление и скорость ветра в выбранной точке либо в вертикальном разрезе.

Документы, цитированные в отчете о поиске Патент 2017 года RU2617020C1

0
SU98256A1
ПРИБОР ДЛЯ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ И СКОРОСТИ ВЕТРА 1992
  • Счисленок Владимир Никитович[By]
RU2101736C1
АДАПТИВНЫЙ СПОСОБ ОПЕРАТИВНОГО ДИСТАНЦИОННОГО ИЗМЕРЕНИЯ СКОРОСТИ И НАПРАВЛЕНИЯ ВЕТРА 2011
  • Белов Михаил Леонидович
  • Городничев Виктор Александрович
  • Иванов Сергей Евгеньевич
  • Козинцев Валентин Иванович
RU2465606C1
СОЕДИНИТЕЛЬНЫЙ ЗАЖИМ КОМБИНИРОВАННОГО ТИПА 2004
  • Карасев Николай Алексеевич
  • Липунцов Виктор Иванович
RU2272343C1
ТОПЛИВНАЯ КОМПОЗИЦИЯ 2000
  • Васильев Р.Л.
  • Пендюхов Е.П.
  • Митусова Т.Н.
  • Пугач И.А.
  • Гешеле В.Э.
  • Лукк А.Ю.
  • Кривченков И.Т.
RU2154665C1

RU 2 617 020 C1

Авторы

Кураков Сергей Анатольевич

Куракова Полина Сергеевна

Куракова Ольга Алексеевна

Даты

2017-04-19Публикация

2016-05-04Подача