СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОЙ КОМПОЗИЦИИ Российский патент 2017 года по МПК C08J3/20 C08L23/06 C08K3/34 C08K3/20 C08K5/98 C08K5/00 H01B3/30 

Описание патента на изобретение RU2617165C1

Изобретение относится к кабельной промышленности, а именно к способам получения электроизоляционной композиции, предназначенной для изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении.

Известен способ нанесения на неорганические наполнители различных гидрофобных продуктов, например насыщенных или ненасыщенных жирными кислотами или их солями, в частности олеиновой кислотой или стеариновой кислотой, или соответствующими олеатами или стеаратами, или органосиланами или титанатами [1. Сироткина Е.Е., Митюшкин С.Ю., Борило А.В. Полипропилен и тальконаполненные композиции на его основе // Пластические массы. 1997. - №2. - С. 27-31].

Недостатком способа является образование слоя покрытия с неудовлетворительным внешним видом, который имеет тусклую шероховатую поверхность. Наблюдается образование пор внутри огнезащитного слоя, что приводит к последующему ухудшению механических свойств этого покрытия.

Наиболее близким является способ приготовления огнезащитной композиции [RU 2237078 С2, МПК 7 С09К 21/02, C08J 3/20, C08L 23/08, Н01В 7/295, С09К 21/02, C08J 3/20, опубл. 27.09.2004], заключающийся в смешивании полимерной основы с неорганическим наполнителем при нагревании при заданной температуре и в течение заданного времени таким образом, чтобы уменьшить влажность, содержащуюся в огнезащитном наполнителе, а затем добавление дегидратирующего агента к полученной в результате смеси, который способствует поглощению воды.

В качестве дегидратирующего агента используют оксид кальция, хлорид кальция, безводную окись алюминия, цеолиты, сульфат магния, оксид магния, оксид бария или их смесей. Этот дегидратирующий агент может быть добавлен к огнезащитной композиции во время стадии смешивания (приготовления смеси) или непосредственно перед введением в экструдер.

Дегидратирующий агент оказывает свое действие путем поглощения воды, присутствующей в огнезащитном наполнителе, которая выделяется во время нагрева композиции на стадии экструдирования.

Механизм адсорбции предпочтительно относится к необратимому типу, или дегидратирующий агент может адсорбировать воду обратимо, но с низкой скоростью высвобождения влаги при температуре экструдирования, с тем чтобы обеспечить, по существу, отсутствие воды в парообразном состоянии во время стадии экструдирования. Это предотвращает образование пор внутри огнезащитного покрытия и/или появление шероховатостей на его поверхности. Количество высвобожденной воды увеличивается с повышением температуры экструдирования, в результате чего преимущества, происходящие от присутствия дегидратирующих агентов, становятся особенно очевидными тогда, когда используются относительно высокие температуры экструдирования, как правило выше 180°С, предпочтительно выше 200°С.

Однако известный способ имеет следующие недостатки:

1. Введение дегидратирующего агента ведет к дополнительным затратам (расходам) реагентов и может ухудшать физико-механические свойства композиции.

2. Усложнение способа получения полимерной композиции за счет добавления дегидратирующего агента.

Задачей изобретения является создание способа получения однородной электроизоляционной композиции, исключающей неравномерное перемешивание полимера и наполнителей с гидрофильной поверхностью.

Поставленная задача достигается тем, что в предложенном способе получения электроизоляционной композиции осуществляют смешение полиолефина - полиэтилена высокого давления с неорганическим наполнителем и добавками (антипирены и стабилизаторы). Все компоненты с полярной поверхностью предварительно высушивают при температуре 105°С до абсолютно сухого состояния.

В качестве наполнителя используют тальк, обладающий в естественных условиях полярной поверхностью. Поверхность полимерных веществ (полиолефинов) является аполярной, поэтому в процессе смешения этих компонентов возникает проблема равномерного распределения порошкообразного наполнителя в полимерной матрице, что приводит к ухудшению физико-механических свойств композиции.

Кроме наполнителей в полимерную композицию вводят стабилизаторы, предотвращающие или замедляющие термоокислительную и фотоокислительную деструкцию, позволяющие предотвратить старение полимерных материалов и продлить срок их службы. В качестве стабилизаторов использовались ричнокс 1010 и стеарат кальция.

Ричнокс 1010 (Richnox 1010), (тетракис[метилен-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат]метан). Молекулярная масса 1178 г/моль. Порошок белого цвета с плотностью 1015 г/см3. Интервал температуры плавления 110-125°С. Растворимость в воде <1⋅10-4 г/л (при 20°С). Хорошо растворим в ацетоне, этилацетате. Применяется для стабилизации полиолефинов, таких как полиэтилен, полипропилен, полибутен, а также для полиацеталей, полиамидов и полиуретанов.

Стеарат кальция - (С17Н35СОО)2Са. Белый порошок с температурой плавления 175°С и плотностью 1,035 г/см3. Растворяется в бензоле, толуоле и других неполярных растворителях. Не растворяется в воде.

В качестве антипиренов, препятствующих разложению материала с выделением горючих газов, предотвращающих их воспламенение и повышающих огнестойкость, использовались оксид сурьмы (III) и декабромдифенилоксид (ДБДФО).

Оксид сурьмы - Sb2О3. Тонкодисперсный порошок белого цвета. Температура плавления 656°С, кипения 1456°С. Практически не растворяется в воде.

ДБДФО - декабромдифенилоксид (С16Н10Вr10О). Порошок белого или слегка кремового цвета с температурой плавления 300°С. Плохо растворяется в органических растворителях. Антипирен для полиэтилена, полистирола, АБС-пластика, полиуретанов и др.; придает негорючесть текстильным материалам из хлопка, полиэфирных и полиамидных волокон.

Электроизоляционная композиция получена при следующем соотношении компонентов, масс. %:

полиэтилен высокого давления 49,6-71,6 тальк 15,0-40,0 ДБДФО 7-9 оксид сурьмы 3-4 стеарат кальция 0,2 ричнокс 1010 0,2

Так как поверхность ричнокса и стеарата кальция является аполярной, то эти порошки хорошо смешиваются с расплавленными полиолефином.

Компонентами, обладающими полярными свойствами, является наполнитель (тальк) и антипирены (оксид сурьмы и декабромдифенилоксид).

Количество влаги, адсорбированной на поверхности полярных частиц наполнителя и антипиренов, зависит не только от физических свойств частиц (размер частиц, краевой угол смачивания, адсорбционные свойства и пр.), но и от влажности окружающей среды. Чем больше влажность воздуха, тем большее количество влаги адсорбируется на полярной поверхности, и тем самым большее количество воды вносится в полимерную матрицу.

Для предотвращения агрегации тонкодисперсных порошков с полярной поверхностью в полимерной матрице необходимо предварительное высушивание наполнителя и антипиренов до абсолютно сухого состояния, после чего поверхности этих порошков становятся аполярными. Это было проверено экспериментально по удельным седиментационным объемам порошков в жидкостях различной полярности. При этом влажность наполнителя варьировалась от абсолютно сухого до предельного насыщения при 100% влажности воздуха. Навески порошкообразного наполнителя и антипиренов с полярной поверхностью в количестве 1 г помещали в пробирки и заливали полярной (вода) и аполярной (октан) жидкостью, выдерживали 1 сутки, после чего определяли удельный седиментационный объем осадка (табл. 1-2).

Величина объема, занимаемого одной и той же навеской в жидкостях различной полярности, позволяет оценить их смачиваемость, исходя из предложенного нами коэффициента смачивания - К (табл. 3).

где Vп - удельный седиментационный объем порошка в полярной жидкости, см3/г;

Vап - удельный седиментационный объем порошка в аполярной жидкости, см3/г.

При значениях К>1 - поверхность исследуемого материала гидрофобная, при К<1 - поверхность гидрофильная. Чем больше значение К отличается от единицы, тем соответственно более гидрофобным или гидрофильным является исследуемый материал. При равенстве удельных седиментационных объемов коэффициент К=1, что соответствует краевому углу смачивания, равному 90°.

Анализируя полученные результаты, можно сделать следующие выводы. Изменение удельного седиментационного объема талька, ДБДФО и оксида сурьмы с гидрофильной поверхностью в жидкостях различной полярности позволило установить, что гидрофильность поверхности зависит от гигроскопичности порошков, т.е. способности материала поглощать влагу из окружающей среды. Установлено, что естественная влажность талька равна 0,18%, оксида сурьмы - 0,20%, ДБДФО - 0,14%. При осуществлении процесса глубокой сушки порошка поверхность частиц становится гидрофобной. Как показано в табл. 1-3, тальк, оксид сурьмы и ДБДФО, имеющие на своей поверхности гигроскопическую влагу, обладают гидрофильной поверхностью. Однако высушенные до абсолютно сухого состояния эти порошки становятся гидрофобными, так как удельный седиментационный объем осадков в воде превышает удельный седиментационный объем осадков в октане.

Это говорит о том, что гидрофобные взаимодействия не проявляются в абсолютно сухом материале. Однако порошки с естественной влажностью, или специально увлажненные до максимальной гигроскопичности, занимают различные объемы в полярной и аполярной жидкостях. То есть молекулы воды, адсорбированные на поверхности порошкообразного материала, способствуют проявлению гидрофобных взаимодействий.

В таблице 1 представлены удельные седиментационные объемы наполнителя и антипиренов в полярной (вода) среде, в таблице 2 - в аполярной (октан) среде.

В таблице 3 представлен коэффициент смачивания порошков К.

В таблице 4 показаны примеры получения электроизоляционной композиции.

Пример 1. В лабораторный смеситель типа Бенбери загружают 1,5 кг смеси следующего состава (% масс):

ПЭВД 15803-020 56,6 тальк POW 30,0 ДБДФО 9 оксид сурьмы 4 стеарат кальция 0,2 ричнокс 1010 0,2

Тальк берут естественной влажностью 0,18%, оксид сурьмы влажностью 0,20% и ДБДФО - 0,14%. Смешение происходит при температуре 140°С в течение 8 минут, затем полученную композицию экструдируют и определяют физико-механические свойства, представленные в табл. 4.

Пример 2. В лабораторный смеситель типа Бенбери загружают смесь, как в примере 1. Тальк, оксид сурьмы ДБДФО были предварительно высушены при 105°С до абсолютно сухого состояния. Смешение компонентов происходит при 140°С в течение 4 минут, затем полученную композицию гранулируют при температуре расплава и проводят физико-механические испытания (табл. 4).

Примеры на предельные и запредельные значения приведены в таблице 4, из которой видно, что время перемешивания композиции с абсолютно сухими добавками с полярной поверхностью составляет 3-5 мин, в то время как использование компонентов с естественной влажностью увеличивает время перемешивания до 13 мин.

На физико-механические свойства композиции влияет также содержание наполнителя (талька) от 15 до 40%.

При 15% содержании талька в композиции физико-механические свойства изменяются незначительно в зависимости от содержания влаги в наполнителе. Однако у композиции с высушенным тальком физико-механические показатели несколько выше, чем у полимерной композиции с увлажненным наполнителем.

При увеличении содержания талька до 40% улучшаются физико-механические показатели для композиции с абсолютно сухими порошками с полярной поверхностью по сравнению с увлажненными компонентами: показатель текучести расплава с 1,3 до 1,4 г/10 мин; относительное удлинение с 40 до 50%. При этом время перемешивания композиции уменьшается с 13 до 5 мин.

Похожие патенты RU2617165C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОЙ КОМПОЗИЦИИ 2014
  • Семакина Ольга Константиновна
  • Бабенко Сергей Александрович
  • Денисова Светлана Анатольевна
  • Поспелова Наталья Ивановна
RU2573517C2
ОГНЕСТОЙКАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ ПОЛИДИЦИКЛОПЕНТАДИЕНА 2023
  • Бондалетов Владимир Григорьевич
  • Бондалетова Людмила Ивановна
RU2807450C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ ЗАЩИТНОЙ ОДЕЖДЫ 2012
  • Фатхутдинов Равиль Хилалович
  • Уваев Вильдан Валерьевич
  • Карасева Ирина Павловна
  • Пухачева Элеонора Николаевна
  • Зарипова Валерия Маратовна
  • Саляхова Миляуша Акрамовна
  • Маслов Владимир Алексеевич
  • Жданов Николай Николаевич
RU2521043C2
Состав для получения огнестойкого покрытия 2016
  • Чухланов Владимир Юрьевич
  • Селиванов Олег Григорьевич
  • Трифонова Татьяна Анатольевна
  • Чухланова Наталья Владимировна
RU2618556C1
СПОСОБ ИЗГОТОВЛЕНИЯ САМОГАСЯЩИХСЯ КАБЕЛЕЙ, ВЫДЕЛЯЮЩИХ НИЗКИЕ УРОВНИ ДЫМА, И ИСПОЛЬЗУЕМЫЕ В НИХ ОГНЕЗАЩИТНЫЕ КОМПОЗИЦИИ 1999
  • Перуццотти Франко
  • Тирелли Диего
  • Либой Паоло
  • Альбиццати Энрико
RU2237078C2
Самозатухающая композиция 1985
  • Васильев Виктор Александрович
  • Акутин Модест Сергеевич
  • Лебедева Елена Дмитриевна
  • Рило Роман Павлович
  • Нестеров Николай Иванович
  • Ицкова Татьяна Георгиевна
SU1318601A1
ЭЛЕКТРОИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ 2011
  • Фомин Денис Леонидович
  • Космынин Василий Иванович
  • Карпенко Глеб Викторович
  • Мазина Людмила Александровна
RU2488608C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ДИЭЛЕКТРИКА 2023
  • Пахотин Владимир Александрович
  • Семенов Сергей Евгеньевич
  • Сударь Николай Тобисович
RU2821113C1
СОСТАВ КОМПОЗИЦИОННОГО ТЕРМОПЛАСТИЧНОГО МАТЕРИАЛА 2006
  • Струк Василий Александрович
  • Кравченко Виктор Иванович
  • Костюкович Геннадий Александрович
  • Авдейчик Сергей Валентинович
  • Чекель Александр Владимирович
RU2309964C1
СОСТАВ ПОЛИМЕРНОГО ТЕРМОПЛАСТИЧНОГО МАТЕРИАЛА 2006
  • Струк Василий Александрович
  • Кравченко Виктор Иванович
  • Костюкович Геннадий Александрович
  • Авдейчик Сергей Валентинович
  • Чекель Александр Владимирович
  • Овчинников Евгений Витальевич
RU2305117C1

Реферат патента 2017 года СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОЙ КОМПОЗИЦИИ

Изобретение относится к кабельной промышленности и может быть использовано при изготовлении изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении. Для получения электроизоляционной композиции смешивают полиолефин - полиэтилен высокого давления, неорганический наполнитель с полярной поверхностью – тальк, антипирены с полярной поверхностью – декабромдифенилоксид (ДБДФО) и оксид сурьмы, стабилизаторы с аполярной поверхностью - стеарат кальция и ричнокс 1010 при следующем соотношении компонентов, мас.%: полиэтилен высокого давления 49,6-71,6; тальк 15,0-40,0; ДБДФО 7-9; оксид сурьмы 3-4; стеарат кальция 0,2; ричнокс 1010 0,2. Наполнитель и антипирены предварительно высушивают при 105°С до абсолютно сухого состояния. Изобретение позволяет получить однородную электроизоляционную композицию, исключить неравномерное перемешивание полимера, наполнителя и антипиренов. 4 табл., 2 пр.

Формула изобретения RU 2 617 165 C1

Способ получения электроизоляционной композиции, включающий смешение полиолефина - полиэтилена высокого давления, неорганического наполнителя с полярной поверхностью – талька, антипиренов с полярной поверхностью – декабромдифенилоксида (ДБДФО) и оксида сурьмы, стабилизаторов с аполярной поверхностью - стеарата кальция и ричнокса 1010 с предварительным высушиванием наполнителя и антипиренов при 105°С до абсолютно сухого состояния при следующем соотношении компонентов, мас.%:

полиэтилен высокого давления 49,6-71,6 тальк 15,0-40,0 ДБДФО 7-9 оксид сурьмы 3-4 стеарат кальция 0,2 ричнокс 1010 0,2.

Документы, цитированные в отчете о поиске Патент 2017 года RU2617165C1

СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОЙ КОМПОЗИЦИИ 2014
  • Семакина Ольга Константиновна
  • Бабенко Сергей Александрович
  • Денисова Светлана Анатольевна
  • Поспелова Наталья Ивановна
RU2573517C2
ПОЛИМЕРНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОЛИЗНЫХ ВАНН 2009
  • Тибилов Николай Кимаевич
RU2436815C2
СПОСОБ ИЗГОТОВЛЕНИЯ САМОГАСЯЩИХСЯ КАБЕЛЕЙ, ВЫДЕЛЯЮЩИХ НИЗКИЕ УРОВНИ ДЫМА, И ИСПОЛЬЗУЕМЫЕ В НИХ ОГНЕЗАЩИТНЫЕ КОМПОЗИЦИИ 1999
  • Перуццотти Франко
  • Тирелли Диего
  • Либой Паоло
  • Альбиццати Энрико
RU2237078C2
ЭЛЕКТРОИЗОЛЯЦИОННАЯ КОМПОЗИЦИЯ 2011
  • Фомин Денис Леонидович
  • Космынин Василий Иванович
  • Карпенко Глеб Викторович
  • Мазина Людмила Александровна
RU2494125C2
US 20110147042 A1, 23.06.2011
CN 105037911 A, 11.11.2015.

RU 2 617 165 C1

Авторы

Семакина Ольга Константиновна

Бабенко Сергей Александрович

Денисова Светлана Анатольевна

Даты

2017-04-21Публикация

2016-03-10Подача