Способ изготовления дисперсии техуглерода при глубокой очистке сточных вод с производства эмульсионного каучука Российский патент 2017 года по МПК C09C1/48 C02F1/28 C02F1/36 B01J20/20 C02F103/38 

Описание патента на изобретение RU2618847C1

Изобретение относится к очистке сточных вод непористыми сорбентами от поверхностно-активных веществ и может быть использовано в нефтехимической отрасли, в частности, в производстве эмульсионных каучуков и эластомерных композиций, а также при выделении каучука из натурального или синтетического латексов как при использовании солевой коагуляции, так и катионными полиэлектролитами.

В производстве эмульсионных каучуков в качестве эмульгаторов используются мыла диспропорционированной канифоли и жирных кислот (СиЖК) и лейканол, являющийся натриевой солью продукта конденсации β-нафталин-сульфокислоты с формальдегидом. Лейканол хорошо растворим в воде и относится к жестким поверхностно-активным веществам, которые не подвергаются биологической деструкции.

Содержание лейканола в сточных водах производства эмульсионных каучуков и латексов колеблется от 2,5 до 5,5 мг/дм3, а после их очистки на биологических сооружениях - от 1,25 до 2,5 мг/дм3 при норме на сброс 0,1 мг/дм3. Следует отметить, что при сбросе допустимое содержание карбоновых кислот в биологически очищенных стоках не должно превышать 0,8 мг/дм3.

Известен способ очистки сточных вод производства эмульсионных каучуков и латексов от лейканола (Патент РФ 2443635 С1, С02F 1/56, B01/D 21/01, C02F 103/38. Опубл. 27.02.2012, Бюл. № 6) путем добавления коагулянта на основе полимерной соли четвертичного аммония, отличающийся тем, что в качестве коагулянта используют полидиаллилдиметиламмоний хлорид в количестве 5÷10 мг/дм3 сточной воды.

Химизм процесса связывания лейканола сводится к образованию труднорастворимого комплекса при взаимодействии лейканола с катионоактивным флокулянтом по схеме (Полуэктов П. Т., Корчагин В. И. Физико-механические основы очистки сточных вод от полимерных загрязнений в производстве бутадиен и бутадиен-стирольных латексов [Текст]. / Производство и использование эластомеров. М.: ЦНИИТЭнефтехим, 1998. Вып. 3. – С. 7–9).

Недостатком данного способа является использование аминных коагулянтов, относящихся к бионеразлагаемым продуктам, которые представляют особую опасность для окружающей среды, т.к. способны растворяться в воде или в кислой среде, накапливаться в водоемах и ухудшать санитарно-гигиеническое состояние. Синтетические аминные коагулянты оказывают отрицательное воздействие на биологическую очистку сточных вод, угнетая микроорганизмы в аэротенках, вплоть до их гибели. Передозировка коагулянтов аминного типа ведет к выводу из рабочего режима биологические сооружения, при этом, учитывая большой объем сточных вод до 30 м3 на тонну каучука при использовании солевой коагуляции и стоимость коагулянта, данный способ является технически и экономически нецелесообразным.

Известен способ очистки сточных вод, содержащих поверхностно-активные вещества и неорганические соли (Патент РФ 2271335 С2, С02F 1/28, С02F 1/44, C02F 103/38. Опубл. 10.03.2006. Бюл. № 7), при использовании в качестве адсорбента предварительно измельченных отработанных сорбентов КУ-1 и КУ-2. Способ позволяет провести разделение и концентрирование раствора органических солей обратным осмосом, а также экстракцией регенерировать адсорбент, с помощью которого проведено извлечение лейканола и карбоновых кислот, т.к. процесс ведут при рН = 2,0÷4,0.

Следует отметить, что способ не обеспечивает глубокое извлечение лейканола из стоков, а при большом расходе требуются достаточно большие площади для размещения установки обратного осмоса.

В источнике (Патент РФ 2288926 С1, С09С 1/56. Сажевая суспензия и способ ее изготовления. 10.12.2006. Опубл. № 34) получение дисперсии сажи (техуглерода) достигается извлечением лейканола и калиевых мыл диспропорционнированной канифоли и жирных кислот и их производных из сточной воды с производства эмульсионных каучуков.

Следует отметить, что использованная сажа относится к непористым сорбентам и представляет собой техуглерод с развитой поверхностью не менее 40 м2/г, что позволяет произвести более глубокое извлечение поверхностью громоздких молекул лейканола и мыл диспропорционированной канифоли и жирных кислот. К недостатку следует отнести продолжительное диспергирование в течение 60–70 минут и получение грубой дисперсии сажи, что обусловлено недостаточной степенью диспергирования.

Наиболее близким по технической сущности и достигаемому эффекту является способ изготовления водной дисперсии техуглерода (Патент на изобретение RU № 2452749, С09С 1/44. Опубл. 10.12.2012. Бюл. № 16), включающий диспергирование техуглерода с компонентами сточной воды с узла коагуляции бутадиен-стирольных каучуков диспергатором Д - лейканолом, эмульгирующими агентами – калиевыми мылами диспропорционированной канифоли и жирных кислот при рН = 2,0÷4,0 в ультразвуковом диспергаторе мощностью 100 Вт/дм3 в течение 1÷3 минут с последующим подщелачиванием до рН = 7,0÷9,0 и стабилизацию с общим временем процесса получения дисперсии 7 мин.

Однако при реализации данного способа необходимо учесть следующее:

- использование низкоконцентрированного стока для приготовления устойчивой дисперсии техуглерода;

- недостаточная степень очистки стоков от бионеразлагаемого диспергатора Д – лейканола;

- необходимость более глубокого извлечения мыл смоляных кислот, крайне полезных, при изготовлении резиновых смесей с использованием водной дисперсии техуглерода;

- продолжительное диспергирование и, как следствие, высокие энергетические затраты при извлечении техуглеродом из стоков лейканола, смоляных и жирных кислот и их производных;

- продолжительное ультразвуковое воздействие на сточные воды снижает эффективность очистки из-за деструкции эмульгирующих компонентов, что снижает сорбционную способность техуглеродом;

- получение водной дисперсии техуглерода низкой концентрации ограничивает её использование;

- минимизацию подщелачивающего агента при корректировке водородного показателя – рН;

- ограниченное использование очищенных стоков в производстве.

Технической задачей изобретения является глубокое извлечение из сточных вод лейканола (диспергатора Д) и эмульгаторов - мыл смоляных и жирных кислот - с минимальной корректировкой водородного показателя рН при минимальных энергетических затратах и деструктивных процессах эмульгирующих компонентов (лейканола и карбоновых кислот и их производных).

Для решения технической задачи изобретения предложен способ изготовления дисперсии техуглерода при глубокой очистке сточных вод с производства эмульсионного каучука, включающий извлечение эмульгирующих компонентов – загрязняющих примесей сточной воды - с узла выделения эмульсионного каучука и ультразвуковое диспергирование непористого сорбента, где новым является то, что вначале получают дисперсию непористого сорбента, имеющего удельную поверхность 40÷140 м2/г, в ультразвуковом диспергаторе с удельной мощностью 250÷500 Вт/дм3 в течение 10÷60 с при смешении с низкоконцентрированным стоком с узла выделения эмульсионного каучука с последующим её концентрированием на ультрафильтрационной установке до содержания 5÷12,5 мас.% , после чего она смешивается со сточной водой в следующем ультразвуковом диспергаторе с удельной мощностью 250÷500 Вт/дм3 в течение 10÷60 с с дальнейшим концентрированием на ультрафильтрационной установке до содержания 10÷25 мас.%, при этом используют проточные диспергаторы, а число ступеней ультразвуковой обработки и концентрирования составляет от 2 до 5.

Технический результат изобретения заключается в получении устойчивой водной дисперсии техуглерода при использовании в качестве диспергирующих агентов загрязняющих компонентов сточных вод, т.е. их применение в качестве вторичных сырьевых ресурсов при получении саженаполненных каучуков, что позволит повысить технико-экономические показатели производства эмульсионных каучуков, а главное, провести глубокую очистку сточных вод с производства эмульсионного каучука.

Способ осуществляется следующим образом.

Сточная вода со стадии выделения эмульсионного каучука катионными полиэлектролитами с содержанием лейканола 2,8÷5,4 мг/дм3 и калиевых мыл диспропорционированной канифоли и жирных кислот 81÷169 мг/дм3, при этом показатель общей загрязненности по ХПК составляет 145÷390 мгО/дм3, а по БПК – 81÷242 мгО/дм3, направляется в промежуточную емкость с перемешивающим устройством, куда подается сухой техуглерод.

В качестве непористых сорбентов с удельной поверхностью 40÷150 м2/г (по азоту) используют печной техуглерод марок: N115; N220; N234; N326; N 347; N330; N550 и др. в соотношении вода:техуглерод = 100:(1÷12,5) и подвергают ультразвуковой обработке в диспергаторе марки УЗТА-0,63/22-ОМ при удельной мощности 250÷500 Вт/дм3 в течение 10÷60 с с последующим концентрированием на ультрафильтрационной установке до содержания техуглерода 5÷12 мас.%, отделяют часть глубоко очищенной воды и получают дисперсию с содержанием непористого сорбента 10÷25 мас.%, а затем направляют на следующую ступень ультразвуковой обработки и концентрирования. Количество стадий, включающих ультразвуковую обработку, в том числе в проточном диспергаторе, и концентрирование на ультрафильтрационной установке, составляет от 2 до 5 ступеней.

Способ изготовления дисперсии техуглерода при глубокой очистке сточных вод с производства эмульсионного каучука поясняется следующими примерами.

Пример 1 (по изобретению)

Сточная вода с содержанием лейканола 5,1 мг/дм3 и мыл смоляных и жирных кислот и их производных 49 мг/дм3 при рН = 3,5 смешиваются в сборнике с техуглеродом марки N 330 с удельной поверхностью 79 м2/г в соотношении техуглерод:сточная вода = 1:100, а затем обрабатываются в ультразвуковом диспергаторе с удельной мощностью 100 Вт/дм3 в течение 120 с, а затем подщелачивают до рН = 7,0 и стабилизируют дисперсию в течение 300 с, после чего она концентрировалась на ультрафильтрационной установке до содержания техуглерода в дисперсии 10% по массе.

Полученная водная дисперсия техуглерода имела период седиментационной устойчивости 16 суток, а очищенная вода содержала лейканол 0,9 мг/дм3 и мыла смоляных и жирных кислот и их производных 4,2 мг/дм3, при этом показатель общей загрязненности по ХПК - 33 О2 мг/дм3, БПК – 17 О2 мг/дм3, соотношение БПК/ХПК возрастало с 42,8 до 51,5%, что показывает на извлечение из стоков сопутствующих трудноокисляемых веществ.

Пример 2

Процесс осуществляют аналогично примеру 1 с тем отличием, что соотношение техуглерод:сточная вода = 5:100, а затем обрабатывают в ультразвуковом диспергаторе с удельной мощностью 350 Вт/дм3 в течение 30 с, а затем дисперсия подвергается концентрированию на ультрафильтрационной установке до содержания 10%, после чего она смешивается в промежуточной емкости с новой порцией сточной воды в следующем ультразвуковом диспергаторе с удельной мощностью 350 Вт/дм3 в течение 30 с с дальнейшим концентрированием на ультрафильтрационной установке до содержания 20 мас.%.

Полученная водная дисперсия техуглерода имела седиментационную устойчивость более 30 суток, а очищенная вода содержала лейканол 0,1 мг/дм3 и мыла смоляных и жирных кислот и их производных 0,5 мг/дм3, при этом показатель общей загрязненности по ХПК 10,0 О2 мг/дм3, БПК – 7,0 О2мг/дм3, соотношение БПК/ХПК - 70%. Следует отметить, что при введении печного техуглерода показатель увеличивается до рН = 4,3.

Пример 3

Процесс осуществляют аналогично примеру 2 с тем отличием, что время пребывания в проточных ультразвуковых диспергаторах с удельной мощностью 500 Вт/дм3 составляет по 30 с, т.е. общая продолжительность ультразвуковой обработки составляет 60 с.

Качественные показатели дисперсии техуглерода и очищенного стока приведены в таблице.

Пример 4

Процесс осуществляют аналогично примеру 2 с тем отличием, что время пребывания в проточных ультразвуковых диспергаторах с удельной мощностью 600 Вт/дм3 составляет по 60 с, т.е. общая продолжительность ультразвуковой обработки составляет 120 с.

Качественные показатели дисперсии техуглерода и очищенного стока приведены в таблице. Следует отметить, что качественные показатели стока практически не изменяются при увеличении продолжительности и степени воздействия, но при этом возрастают энергетические затраты, которые превышают затраты по способу прототипа.

Пример 5

Процесс осуществляют аналогично примеру 2 с тем отличием, что время пребывания в проточных ультразвуковых диспергаторах с удельной мощностью 250 Вт/дм3 составляет по 10 с, т.е. общая продолжительность составляет 20 с.

Качественные показатели дисперсии техуглерода и очищенного стока приведены в таблице.

Пример 6

Процесс осуществляют аналогично примеру 2 с тем отличием, что время пребывания в проточных ультразвуковых диспергаторах с удельной мощностью 200 Вт/дм3 составляет по 5 с, т.е. общая продолжительность составляет 10 с.

Качественные показатели дисперсии техуглерода и очищенного стока приведены в таблице. Однако содержание смоляных и жирных кислот превышает нормативный показатель – 0,8 мг/дм3.

Пример 7

Процесс осуществляют аналогично примеру 2 с тем отличием, что в качестве непористого сорбента используют техуглерод марки N220 с удельной поверхностью 115 м2/г.

Качественные показатели дисперсии техуглерода и очищенного стока приведены в таблице.

Пример 8

Процесс осуществляют аналогично примеру 2 с тем отличием, что в качестве непористого сорбента используют техуглерод марки N115 с удельной поверхностью 143 м2/г.

Качественные показатели дисперсии техуглерода и очищенного стока приведены в таблице.

Пример 9

Процесс осуществляют аналогично примеру 2 с тем отличием, что в качестве непористого сорбента используют техуглерод марки N550 с удельной поверхностью 41 м2/г.

Качественные показатели дисперсии техуглерода и очищенного стока приведены в таблице.

Пример 10

Процесс осуществляют аналогично примеру 2 с тем отличием, что смешение сточной воды и техуглерода проводят при соотношении 100:12,5.

Однако получение дисперсии свыше 25 мас.% усложняет ультрафильтрационное концентрирование и дальнейшее их использование.

Пример 11

Процесс осуществляют аналогично примеру 2 с тем отличием, что смешение сточной воды и техуглерода проводят при соотношении 100:2, количество стадий увеличивают до 5, при этом диспергирование проводят с использованием ультразвуковых диспергаторов в проточном режиме.

Следует отметить, что увеличение стадий усложняет аппаратурное оформление процесса и повышает расход электроэнергии.

Из анализа качественных показателей следует, что достигается необходимая степень извлечения из сточных вод эмульгирующих компонентов, при этом получают водную дисперсию техуглерода с достаточной седиментационной устойчивостью, необходимой при жидкофазном наполнении эмульсионных каучуков.

Таблица - Качественные показатели сточной воды и седиментационная устойчивость водной дисперсии техуглерода

(по примерам на изобретение)

Похожие патенты RU2618847C1

название год авторы номер документа
САЖЕВАЯ СУСПЕНЗИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2005
  • Корчагин Владимир Иванович
RU2288926C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВОДНОЙ ДИСПЕРСИИ ТЕХУГЛЕРОДА 2011
  • Корчагин Владимир Иванович
  • Протасов Артем Викторович
  • Авдеенко Николай Александрович
  • Корчагин Михаил Владимирович
RU2452749C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА И НЕОРГАНИЧЕСКИЕ СОЛИ 2004
  • Корчагин Владимир Иванович
  • Скляднев Евгений Владимирович
  • Бражников Евгений Борисович
RU2271335C2
Способ изготовления наполненного высокоактивным техуглеродом каучука 2016
  • Корчагин Владимир Иванович
  • Фаляхов Марат Инилович
  • Киселев Иван Сергеевич
  • Кузнецова Евгения Евгеньевна
  • Протасов Артем Викторович
RU2640522C2
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ПРОИЗВОДСТВА ЭМУЛЬСИОННЫХ КАУЧУКОВ И ЛАТЕКСОВ 2003
  • Корчагин В.И.
  • Мальцев М.В.
RU2250876C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ ФУНКЦИОНАЛЬНЫМИ ГРУППАМИ ЖИДКОФАЗНО НАПОЛНЕННЫХ КРЕМНЕКИСЛОТОЙ ЭМУЛЬСИОННЫХ КАУЧУКОВ 2011
  • Полуэктов Павел Тимофеевич
  • Власова Лариса Анатольевна
  • Григорян Галина Викторовна
  • Гусев Юрий Константинович
  • Блинов Евгений Васильевич
  • Папков Валерий Николаевич
RU2487891C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННЫХ НАПОЛНЕННЫХ ЭМУЛЬСИОННЫХ КАУЧУКОВ 2006
  • Корчагин Владимир Иванович
  • Полуэктов Павел Тимофеевич
  • Власова Лариса Анатольевна
  • Шутилин Юрий Федорович
  • Корчагин Михаил Владимирович
RU2293741C1
СПОСОБ ТЕРМИЧЕСКОЙ ОЧИСТКИ ОТРАБОТАННОГО ВОЗДУХА ПРОИЗВОДСТВА ЭМУЛЬСИОННЫХ КАУЧУКОВ ОТ УГЛЕВОДОРОДОВ 2014
  • Полуэктов Павел Тимофеевич
  • Папков Валерий Николаевич
  • Власова Лариса Анатольевна
RU2564341C2
СПОСОБ ПОЛУЧЕНИЯ ЛАТЕКСОВ 2016
  • Корыстина Людмила Андреевна
  • Рахматуллин Артур Игоревич
  • Никулин Михаил Владимирович
RU2622649C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ПРОИЗВОДСТВА ЭМУЛЬСИОННЫХ КАУЧУКОВ И ЛАТЕКСОВ ОТ ЛЕЙКАНОЛА 2010
  • Иванов Константин Михайлович
  • Рачинский Алексей Владиславович
  • Сафронов Сергей Владимирович
  • Малыгин Алексей Викторович
  • Глуховцев Сергей Иванович
  • Букреев Николай Ильич
  • Мазина Людмила Анатольевна
RU2443635C1

Реферат патента 2017 года Способ изготовления дисперсии техуглерода при глубокой очистке сточных вод с производства эмульсионного каучука

Изобретение может быть использовано в нефтехимической отрасли, в производстве эмульсионных каучуков и эластомерных композиций, при выделении каучука из латексов. Для осуществления способа проводят извлечение эмульгирующих компонентов – загрязняющих примесей сточной воды - с узла выделения эмульсионного каучука и ультразвуковое диспергирование непористого сорбента – техуглерода. Сначала получают дисперсию непористого сорбента, имеющего удельную поверхность 40-150 м2/г, в ультразвуковом проточном диспергаторе с удельной мощностью 250-500 Вт/дм3 в течение 10-60 с при смешении с низкоконцентрированным стоком с узла выделения эмульсионного каучука с последующим её концентрированием на ультрафильтрационной установке до содержания 5-12,5 мас.%. Затем дисперсию смешивают со сточной водой в следующем ультразвуковом диспергаторе с удельной мощностью 250-500 Вт/дм3 в течение 10-60 с с дальнейшим концентрированием на ультрафильтрационной установке до содержания 10-25 мас.%. Число ступеней ультразвуковой обработки и концентрирования составляет от 2 до 5. Способ обеспечивает получение устойчивой водной дисперсии техуглерода при получении саженаполненных каучуков, что позволяет повысить технико-экономические показатели производства эмульсионных каучуков и провести глубокую очистку сточных вод. 1 табл., 11 пр.

Формула изобретения RU 2 618 847 C1

Способ изготовления дисперсии техуглерода при глубокой очистке сточных вод с производства эмульсионного каучука, включающий извлечение эмульгирующих компонентов – загрязняющих примесей сточной воды - с узла выделения эмульсионного каучука и ультразвуковое диспергирование непористого сорбента, отличающийся тем, что вначале получают дисперсию непористого сорбента, имеющего удельную поверхность 40-140 м2/г, в ультразвуковом диспергаторе с удельной мощностью 250-500 Вт/дм3 в течение 10-60 с при смешении с низкоконцентрированным стоком с узла выделения эмульсионного каучука с последующим её концентрированием на ультрафильтрационной установке до содержания 5-12,5 мас.%, после чего она смешивается со сточной водой в следующем ультразвуковом диспергаторе с удельной мощностью 250-500 Вт/дм3 в течение 10-60 с с дальнейшим концентрированием на ультрафильтрационной установке до содержания 10–25 мас.%, при этом используют проточные диспергаторы, а число ступеней ультразвуковой обработки и концентрирования составляет от 2 до 5.

Документы, цитированные в отчете о поиске Патент 2017 года RU2618847C1

СПОСОБ ИЗГОТОВЛЕНИЯ ВОДНОЙ ДИСПЕРСИИ ТЕХУГЛЕРОДА 2011
  • Корчагин Владимир Иванович
  • Протасов Артем Викторович
  • Авдеенко Николай Александрович
  • Корчагин Михаил Владимирович
RU2452749C1
САЖЕВАЯ СУСПЕНЗИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2005
  • Корчагин Владимир Иванович
RU2288926C1
СОРБЕНТ НА ОСНОВЕ СШИТОГО ПОЛИМЕРА-УГЛЕРОДА ДЛЯ УДАЛЕНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ, ТОКСИЧНЫХ МАТЕРИАЛОВ И ДИОКСИДА УГЛЕРОДА 2011
  • Моханти Диллип
RU2520444C2
US 6685769 B1, 03.02.2004
US 9079149 B2, 14.07.2015
Преобразователь частоты 1988
  • Уралов Николай Григорьевич
  • Бочков Борис Семенович
  • Уралов Дмитрий Николаевич
  • Жилейкина Виолетта Николаевна
SU1513589A1

RU 2 618 847 C1

Авторы

Корчагин Владимир Иванович

Фаляхов Марат Инилович

Купавых Ирина Андреевна

Киселев Иван Сергеевич

Корчагин Михаил Владимирович

Мостовенко Андрей Владимирович

Даты

2017-05-11Публикация

2016-05-12Подача