ЭКСПРЕСС-МЕТОД ОЦЕНКИ КАЧЕСТВА НЕФТЯНЫХ ДИЗЕЛЬНЫХ ТОПЛИВ Российский патент 2017 года по МПК G01N27/22 

Описание патента на изобретение RU2618960C1

Изобретение относится к методам анализа качества материалов электрическими методами, преимущественно жидких углеводородных топлив, содержащих продукты этерификации растительных или животных жиров, или масел, и может быть использовано на автозаправочных станциях и нефтебазах.

Общее производство жидкого биодизеля (метиловых эфиров жирных кислот) в мире возросло с 16 млрд л в 2000 году до 100 млрд л в 2014 году. По оценке Международного энергетического агентства (МЭА) доля биодизеля в транспортной сфере в 2012 г. составила 3%, а к 2050 году может вырасти до 27% от общего объема производимых топлив. Нефтяные дизельные топлива, содержащие метиловые эфиры жирных кислот, относятся к широко используемому топливу за рубежом [1 - Смыслов А.А., Козлов А.В., Степанов В.А. Состояние нефтедобывающей отрасли России в современный период глобализации топливно-энергетического комплекса. Сборник материалов 7-го международного форума «Топливно-энергетический комплекс России». - СПб.: 2007 г., с. 50-56].

Сырьем для производства биодизеля (метиловых эфиров жирных кислот) служат жирные кислоты, реже - эфирные масла различных растений или водорослей. В Европе это рапс, в США - соя, в Канаде - канола (разновидность рапса), в Индонезии и Филиппинах это пальмовое и кокосовое масло, в Индии - ятрофа, в Африке - соя и ятрофа, в Бразилии - касторовое масло.

Согласно требованиям Европейского стандарта EN 14214 биодизелем (В100) называют метиловые эфиры жирных (карбоновых) кислот, полученные из жирового сырья реакцией транс-этерификации, протекающей по следующему уравнению:

Упомянутый стандарт допускает использования в качестве сырья растительные масла из семян рапса, сои, пальмы, кукурузы, хлопка, кунжута и пр., а также животные жиры (говяжий, свиной, птичий, рыбий и др.) и любые фритюрные жиры после переработки.

Технологически неизбежными примесями в биодизеле являются катионы калия или натрия, а также глицерин и моно- или ди-глицериды жирных кислот. Метиловые эфиры жирных кислот, а также упомянутые примеси проявляют электролитическую активность и являются ответственными за повышенную электропроводимость биодизеля по сравнению с топливом нефтяного происхождения [2 - Льотко В., Луканин В.Н., Хачиян А.С. Применение альтернативных топлив в двигателях внутреннего сгорания. - М.: МАДИ(ТУ), 2000, с. 34-36].

Биодизель применяется на автотранспорте и в чистом виде, и в виде различных смесей с нефтяным дизельным топливом. В США смесь дизельного топлива с биодизелем обозначается буквой «В», цифра при букве означает процентное содержание биодизеля в нефтяном дизельном топливе.

Кроме стандарта EN 14214 существуют стандарты EN 590 и DIN 51606. Стандарт EN 590 описывает физические свойства всех видов нефтяных дизельных топлив, реализуемых в ЕС, Исландии, Норвегии и Швейцарии, и допускает содержание биодизеля до 7% в нефтяном дизельном топливе. В некоторых странах (например, во Франции) все нефтяное дизельное топливо содержит 5% биодизеля. Немецкий стандарт DIN 51606, разработан с учетом совместимости биодизеля с двигателями, и поэтому он является самым строгим и допускает содержание биодизеля до 3%.

В России проводятся исследования и испытания биотоплив различных видов: биобензина и биодизеля. Проведены сравнения некоторых свойств биобензина и биодизеля с аналогичными свойствами нефтяных топлив. Результаты показали, что давление насыщенных паров, температура вспышки, температура застывания, октановые и цетановые числа, теплота сгорания био- и нефтяных топлив значительно различаются. Биотоплива не имеют преимуществ перед топливами нефтяного происхождения по физико-химическим и эксплуатационным свойствам, за исключением экологических характеристик [3 - Панкин К.Е., Иванов Ю.В., Кузьмина Р.И., Штыков С.Н Сравнение жидких биотоплив с нефтяными топливами по эксплуатационным характеристикам // Химия и технология топлив и масел, №2, 2011 г., с. 23-25].

На территории Российской Федерации действуют ГОСТ Р 52368-2005 (ЕН 590:2009) «Топливо дизельное ЕВРО. Технические условия» и ГОСТ 32511-2013(ЕН 590:2009) «Топливо дизельное ЕВРО. Технические условия» (аналоги EN 590), в которых содержание метиловых эфиров жирных кислот в нефтяных дизельных топливах допускается до 7,0 об. %.

Увеличение содержания биодизеля более 7,0 об.% в нефтяном дизельном топливе приводит к ухудшению физико-химических и эксплуатационных свойств топлива и рабочих характеристик двигателя. Увеличивает вязкость (особенно при пониженных температурах), ухудшает низкотемпературные характеристики дизельных топлив и оказывает отрицательное воздействие на гибкость топливо-проводов в системе топливоподачи в двигателях [2 - Льотко В., Луканин В.Н., Хачиян А.С. Применение альтернативных топлив в двигателях внутреннего сгорания. - М: МАДИ(ТУ), 2000. с. 34-51].

Учитывая изложенное, определение количественного содержания биодизеля экспресс-методом в нефтяных дизельных топливах является важным фактором для установления некондиционного топлива, применение которого ограничено ГОСТ Р 52368-2005. Топливо, на котором эксплуатируется специальная техника по требованиям ГОСТ не должно содержать метиловых эфиров жирных кислот (должно быть - Отсутствие). Однако бывают случаи, когда производитель допускает присутствие небольшого количества до 1 об.% метиловых эфиров жирных кислот, не указывая это в паспорте на топливо.

Поэтому перед авторами стояла задача разработать простой в исполнении, не требующий сложного оборудования экспресс-метод определения метиловых эфиров жирных кислот в нефтяных топливах.

В настоящее время содержание метиловых эфиров жирных кислот в нефтяных дизельных (средних дистиллятных) топливах определяются несколькими методами.

Так известен способ, включающий выделение фракции метиловых эфиров жирных кислот из среднего дистиллятного топлива методом жидкостной адсорбционной хроматографии при атмосферном давлении на микроколонке с диоксидом кремния с последующей идентификацией выделенных фракций метиловых эфиров жирных кислот методом газовой хроматографии. Количество метиловых эфиров жирных кислот записывают с точностью до 0,1 мас.%. Повторяемость (сходимость) - 0,6 мас.% [4 - ГОСТ Р ЕН 14331-2010 Нефтепродукты жидкие. Идентификация метиловых эфиров жирных кислот (FAME) в средних дистиллятных топливах методом жидкостной и газовой хроматографии].

Недостатками данного метода являются длительность проведения эксперимента и значительные материальные затраты, обусловленные использованием сложного и дорогостоящего оборудования, и то, что метод определяет метиловые эфиры жирных кислот в средних дистиллятных топливах в количестве до 5 об.%, что снижает надежность определения при допустимом значение до 7 об.% и выше метиловых эфиров жирных кислот в средних дистиллятных топливах, а оценка отсутствия метиловых эфиров жирных кислот невозможна.

Наиболее близким по технической сущности к изобретению и взятым за прототип является способ определение метиловых эфиров жирных кислот, сущность которого заключается в регистрации спектра поглощения в средней инфракрасной области пробы для испытания, которая была предварительно разбавлена в заданном соотношении циклогексаном. Измеряют оптическую плотность на максимуме полосы поглощения, для сложных эфиров приблизительно при (1745±5) см-1. Содержание метиловых эфиров жирных кислот затем вычисляют с помощью калибровочной функции, полученной на основе стандартных растворов с известным содержанием метиловых эфиров жирных кислот. Количество метиловых эфиров жирных кислот записывают с точностью до 0,1 об.%. Повторяемость (сходимость) - 0,3 об.% [5 - ГОСТ Р ЕН 14078-2010 Нефтепродукты жидкие. Определение метиловых эфиров жирных кислот (FAME) в средних дистиллятах методом инфракрасной спектроскопии].

Недостатками данного метода являются значительные затраты времени на необходимость специальной подготовки пробы образца и калибровки перед каждым определением специального сложного дорогостоящего оборудования и длительность проведения самого анализа.

Технический результат изобретения - расширение номенклатуры ряда методов определения метиловых эфиров жирных кислот в дизельных топливах с одновременным сокращением времени определения без снижения требований по достоверности и возможность оперативного использования на автозаправочных станциях, нефтебазах и складах горючего.

Учитывая, что метиловые эфиры жирных кислот проявляют электролитическую активность и являются ответственными за повышенную их электропроводимость по сравнению с топливом нефтяного происхождения (у топлив нефтяного происхождения удельная электрическая проводимость равна нулю), а при добавлении метиловых эфиров жирных кислот в нефтяное дизельное топливо увеличивается электролитическая активность такой смеси, сделано предположение, что определение содержания метиловых эфиров жирных кислот в дизельных нефтяных топливах возможно путем измерения удельной электрической проводимости.

Однако авторам не удалось обнаружить ни одного источника информации, в котором бы описывался экспресс-метод определения метиловых эфиров жирных кислот в дизельных нефтяных топливах с помощью измерения их удельной электрической проводимости (γ).

Задачей, на решение которой направлено заявляемое изобретение, является сокращение времени и простота проведения определения содержания метиловых эфиров жирных кислот в дизельных нефтяных топливах и использование простого оборудования, позволяющего получать достоверные данные.

Технический результат изобретения - сокращение времени определение содержания метиловых эфиров жирных кислот в дизельных нефтяных топливах, отбраковка некондиционных топлив в режиме ONLINE при использовании простого оборудования, определение на котором не требует специальной подготовки пробы образца и калибровки прибора.

Технический результат изобретения достигается тем, что в известном способе определения содержание метиловых эфиров жирных кислот в дизельных нефтяных топливах, включающем отбор пробы в заданном количестве, согласно изобретению замеряют удельную электрическую проводимость пробы при температуре 20±2°C, для чего выдерживают датчик в пробе топлива в течение не менее 60±1 с, и определяют содержание метиловых эфиров жирных кислот (FAME) по следующей зависимости:

Q=K1γ+K2, где

Q - содержание метиловых эфиров жирных кислот в нефтяном дизельном топливе, % об.;

γ - удельная электрическая проводимость, пСм/м (показание датчика);

K1=0,701 (коэффициент корреляции), об.% пСм/м;

K2=1,911 постоянная величина, полученная экспериментально, при математической обработке зависимости удельной электрической проводимости от содержания метиловых эфиров жирных кислот в нефтяных дизельных топливах.

Для определения содержания метиловых эфиров жирных кислот в нефтяных дизельных топливах на приборе, измеряющем удельную электрическую проводимость, был подобран режим, позволяющий получать достоверные результаты.

Для обоснования режимных параметров и совокупности приемов заявляемого экспресс-метода были искусственно приготовлены смеси на основе дизельных нефтяных топлив, выпускаемых отечественной промышленностью по различным ГОСТ с метиловыми эфирами жирных кислот. Состав образцов представлен в таблице 1.

Известно, что удельная электрическая проводимость зависит от температуры, при которой проводят испытание, например, при температуре минус 40°C удельная электрическая проводимость составляет 195 пСм/м, а при плюс 40°C - 540 пСм/м [6 - Усиков С.В. Электрометрия жидкостей. Л., «Химия», 1974, 144 с., ил.].

Авторами для проведения определения удельной электрической проводимости была выбрана температура 20±2°C, как наиболее легко устанавливаемая и поддерживаемая в испытуемом образце анализируемого топлива, и упрощающая проведение экспресс метода.

В качестве измерителя удельной электрической проводимости может быть использован любой кондуктометрический прибор погружного типа, как вариант - цифровой измеритель удельной электрической проводимости (кондуктометр) EMCEE ELECTRONICS, INC. Модель 1152 (США).

Для обоснования времени выдерживания датчика в анализируемом топливе были проведены испытания, результаты которых, представлены в таблице 2.

Идентичные исследования проведены и с другими дизельными топливами (см. ссылку под таблице 1) в том же соотношении компонентов.

Результаты испытаний, представленные в таблице 2, свидетельствуют, что только при выдерживании датчика в течение 60±1 с получаются стабильные значения удельной электрической проводимости не зависимо от марки и ГОСТ нефтяного дизельного топлива, которое использовалось для приготовления смесей с метиловыми эфирами жирных кислот.

Как видно из результатов испытаний, выдерживание датчика менее 59 с в анализируемом топливе, не позволяет получать стабильные результаты, а увеличение времени выдерживания датчика более 61 сек экономически не целесообразно.

* при определении удельной электрической проводимости (γ), при одном и том же времени выдержки датчика в пробе, замеры проводились не менее 5 раз в каждом образце, и поэтому для каждого времени приведен разброс показателей удельной электрической проводимости (γ).

Таким образом, режимные параметры - температура пробы и выдерживание датчика в пробе составляют - 20±2°С и 60±1 сек получены при проведении научных исследований на многих искусственно приготовленных образцах.

Полученные экспериментальные данные позволили получить после их математической обработки уравнение, по которому можно рассчитывать содержание метиловых эфиров жирных кислот в нефтяных дизельных топливах:

Q=K1γ+K2, где

Q - содержание метиловых эфиров жирных кислот в нефтяном дизельном топливе, % об.;

γ - удельная электрическая проводимость, пСм/м (показание датчика);

K1=0,701 (коэффициент корреляции), % об./ пСм/м;

K2=1,911 - постоянная величина.

Значения коэффициентов K1 и K2 получены экспериментально при математической обработке зависимости удельной электрической проводимости от содержания метиловых эфиров жирных кислот в нефтяных дизельных топливах.

Для подтверждения достоверности экспресс-метода оценки содержания метиловых эфиров жирных кислот в нефтяных дизельных топливах были проведены сравнительные испытания заявляемым способом и способом по ГОСТ Р EN 14078-2010. Испытания проводились на искусственно приготовленных смесях нефтяного дизельного топлива и метиловых эфиров жирных кислот, состав которых представлен в таблице 1. Результаты представлены в таблице 3. Аналогичные результаты были получены и на других образцах согласно примечанию таблицы 1.

Результаты испытаний, представленные в таблице 3, свидетельствуют, что определение удельной электрической проводимости позволяет контролировать содержание метиловых эфиров жирных кислот в дизельных нефтяных топливах, что также подтверждается определением содержания метиловых эфиров жирных кислот по ГОСТ Р EN 14078-2010.

K1=0,701,

K2=1,911

По полученным результатам была проведена метрологическая аттестация для установления статистически обоснованных показателей точности метода - повторяемости (сходимости) по РД 50-262-81. По результатам метрологической аттестации повторяемость (сходимость) определения удельной электрической проводимости составила 1%, что сопоставимо с повторяемостью, допускаемой для экспресс-методов.

Таким образом, заявляемый способ оценки количества метиловых эфиров жирных кислот в нефтяных дизельных топливах позволяет контролировать их содержание и, в соответствии с нормами, предъявляемыми ГОСТ, может отбраковывать топлива или определять область их применения.

Если в топливе содержание метиловых эфиров жирных кислот до 7% об., топливо соответствует требованиям ГОСТ Р 52368-2005 и может применяться в дизельных двигателях, установленных на технике.

Если в топливе содержание метиловых эфиров жирных кислот более 7% об., то применять в дизельных двигателях такое топливо нельзя. Использовать такое топливо можно только в специально переоборудованных двигателях для эксплуатации на топливах, содержащих метиловые эфиры жирных кислот.

При отсутствии в топливе метиловых эфиров жирных кислот топливо может допускаться к применению в быстроходных дизелях и газотурбинных двигателях наземной и судовой техники.

Разработанный экспресс-метод оценки содержания метиловых эфиров жирных кислот в дизельных нефтяных топливах позволяет сокращать время проведения эксперимента и получать достоверные результаты, пользуясь уравнением, а также позволяет контролировать качество топлива непосредственно на автозаправочных станциях и нефтебазах.

Похожие патенты RU2618960C1

название год авторы номер документа
ТОПЛИВНАЯ КОМПОЗИЦИЯ С УЛУЧШЕННЫМИ НИЗКОТЕМПЕРАТУРНЫМИ СВОЙСТВАМИ 2009
  • Бургазли Джек
  • Бёртон Джерри
  • Дэниэлс Дэйв
RU2515238C2
Кислородсодержащее композиционное дизельное топливо 2023
  • Хуснутдинов Исмагил Шакирович
  • Сафиулина Алия Габделфаязовна
  • Сафина Дина Наилевна
  • Шангараева Альфия Зуфаровна
  • Хуснутдинов Сулейман Исмагилович
RU2813456C1
Кислородсодержащее композиционное дизельное топливо с регулируемыми низкотемпературными свойствами 2023
  • Хуснутдинов Исмагил Шакирович
  • Сафиулина Алия Габделфаязовна
  • Сафина Дина Наилевна
  • Шангараева Альфия Зуфаровна
  • Хуснутдинов Сулейман Исмагилович
RU2811842C1
ТОПЛИВНЫЕ КОМПОЗИЦИИ С УЛУЧШЕННЫМИ СВОЙСТВАМИ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ 2018
  • Куронен, Маркку
  • Кииски, Улла
RU2725661C1
БИОТОПЛИВНАЯ КОМПОЗИЦИЯ 2012
  • Пантелеев Евгений Валентинович
  • Пантелеев Павел Евгеньевич
  • Пантелеева Галина Викторовна
RU2544239C2
БИОТОПЛИВНАЯ КОМПОЗИЦИЯ 2014
  • Пантелеев Евгений Валентинович
  • Пантелеев Павел Евгеньевич
  • Пантелеева Галина Викторовна
RU2553988C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ 2006
  • Койвусалми Эйя
  • Яккула Юха
RU2394872C2
СОСТАВ ЭКОЛОГИЧЕСКИ ЧИСТОГО ДИЗЕЛЬНОГО ТОПЛИВА (ЭЧДТ) 2017
  • Кондрашева Наталья Константиновна
  • Еремеева Анжелика Михайловна
  • Нелькенбаум Савелий Яковлевич
  • Нелькенбаум Константин Савельевич
RU2650119C1
СОПОЛИМЕРИЗАТ С ВЫСОКОЙ ХИМИЧЕСКОЙ ОДНОРОДНОСТЬЮ И ЕГО ПРИМЕНЕНИЕ ДЛЯ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК ХОЛОДНОЙ ТЕКУЧЕСТИ ЖИДКИХ ТОПЛИВ 2011
  • Мэлинг Франк-Олаф
  • Штриттматтер Ян
  • Третш-Шаллер Ирене
  • Гарсиа Кастро Иветт
  • Шрерс Михаэль
  • Ребхольц Уве
RU2565055C2
ПОЛНОСТЬЮ СГОРАЮЩЕЕ ДИЗЕЛЬНОЕ ТОПЛИВО 2006
  • Валентайн Джеймс М.
RU2360950C2

Реферат патента 2017 года ЭКСПРЕСС-МЕТОД ОЦЕНКИ КАЧЕСТВА НЕФТЯНЫХ ДИЗЕЛЬНЫХ ТОПЛИВ

Изобретение относится к способам анализа преимущественно жидких углеводородных топлив, содержащих продукты этерификации растительных или животных жиров, или масел, и может быть использовано на автозаправочных станциях и нефтебазах. Способ согласно изобретению заключается в отборе заданного количества пробы, определение содержания метиловых эфиров жирных кислот, при этом измеряют удельную электрическую проводимость пробы при температуре 20±2°C, для чего датчик прибора выдерживают в пробе анализируемого топлива в течение не менее 60±1 с, и определяют содержание метиловых эфиров жирных кислот (FAME) по предложенной зависимости, при содержании метиловых эфиров жирных кислот (FAME) не более 7 об.% топливо соответствует требованиям ГОСТ Р 52368-2005. Изобретение обеспечивает сокращение времени определения содержания метиловых эфиров жирных кислот в дизельных нефтяных топливах, отбраковку некондиционных топлив в режиме ONLINE при использовании простого оборудования, не требующего специальной подготовки пробы образца и калибровки продукта. 3 табл.

Формула изобретения RU 2 618 960 C1

Экспресс-метод оценки качества нефтяных дизельных топлив, включающий отбор пробы в заданном количестве и определение содержания в них метиловых эфиров жирных кислот, отличающийся тем, что замеряют удельную электрическую проводимость пробы при температуре 20±2°C, для чего датчик прибора выдерживают в пробе анализируемого топлива в течение не менее 60±1 с, и определяют содержание метиловых эфиров жирных кислот (FAME) по следующей зависимости:

Q=K1γ+ K2, где

Q - содержание FAME в нефтяном дизельном топливе, об.%;

γ - удельная электрическая проводимость, пСм/м;

K1=0,701 (коэффициент корреляции), об.% пСм/м (получен экспериментально),

K2=1,911 постоянная величина (получен экспериментально), и при Q≤7 об.% топливо соответствует требованиям ГОСТ Р 52368-2005.

Документы, цитированные в отчете о поиске Патент 2017 года RU2618960C1

Способ очистки технического паранитро-аниметра 1928
  • Цукерман И.И.
SU14078A1
Определение метиловых эфиров жирных кислот (FAME) в средних дистиллятах методом инфракрасной спектроскопии
Щит для проходки тоннелей 1944
  • Лещев Н.А.
  • Романович К.А.
SU65651A1
СПОСОБ И СИСТЕМА КОНТРОЛЯ КАЧЕСТВА ТОПЛИВА 2005
  • Абрамов Александр Евгеньевич
  • Варнаков Валерий Валентинович
  • Варнаков Дмитрий Валерьевич
RU2320983C2
Способ раздельного определения эмульгированной и адсорбированной влаги в дизельных топливах 1980
  • Ахметкалиев Рыскали Бактгереевич
  • Надиров Надир Каримович
SU934341A1
DE102009002740A1, 04.11.2011.

RU 2 618 960 C1

Авторы

Шарин Евгений Алексеевич

Лунева Вера Всеволодовна

Середа Сергей Владимирович

Даты

2017-05-11Публикация

2016-04-06Подача