Способ N-алкилирования циклических аминов Российский патент 2017 года по МПК C07C209/48 B82B3/00 

Описание патента на изобретение RU2622296C1

Изобретение относится к способу получения третичных аминов, в частности к новому способу восстановительного алкилирования циклических аминов нитрилами, и позволяет получать N-алкилированные циклические амины, которые находят применение как полупродукты в органическом синтезе и для получения фармакологических препаратов.

Известен способ получения третичных аминов восстановительным аминированием нитрилов в реакторе автоклавного типа в присутствии катализатора Pd/C и основания при температуре 100-180°С и избыточном давлении 3,5-138 атм) в течение 15-600 мин с использованием водорода в качестве восстановителя. Выходы продуктов составляют 71-96% при конверсии нитрилов 94-99% [Патент 6248925 В1, США, МПК С07С 209/48. Selective reductive amination of nitriles / M.E. Ford, J.N. Armor - опубл. 19.01.2001].

Недостатками данного способа являются необходимость применения повышенного давления и добавок щелочей для обеспечения высокой селективности процесса.

Известен способ получения третичных аминов восстановительным аминированием нитрилов в присутствии медного катализатора, получаемого in situ восстановлением Cu(OTf)2 при температуре 45°С в течение 20 ч в воде с использованием диметиламин-борана в качестве восстановителя. Выходы продуктов составляют 72-80% при конверсии нитрилов 72-100% [Copper-catalysed reductive amination of nitriles and organic-group reductions using dimethylamine borane / D. van der Waals, A. Pettman, J.M.J. Williams // RSC Adv., 2014, v. 4, p. 51845-51849].

Недостатками данного способа являются применение избытка дорогостоящего восстановителя и длительность процесса.

Известен способ получения третичных аминов восстановительным аминированием нитрилов в присутствии Pt/C в проточном реакторе при температуре 105°С и избыточном давлении 6 атм с использованием толуола в качестве растворителя и водорода в качестве восстановителя. Выходы продуктов составляют 70-74% при конверсии нитрилов 32-99% [Pt/C catalyzed direct reductive amination of nitriles with primary amines in a continuous flow multichannel microreactor / S.K. Sharma, J. Lynch, A.M. Sobolewska, P. Plucinski, R.J. Watson, J.M.J. Williams // Catal. Sci. Technol., 2013, v. 3, p. 85-88].

Недостатками данного способа являются применение растворителя, повышенного давления и дорогого платинового катализатора.

Известен способ получения третичных аминов гидрированием енаминов водородом при атмосферном давлении в присутствии наночастиц никеля, получаемых восстановлением хлорида никеля(II) боргидридом натрия in situ, в среде изопропанола при температуре 40-70°С в течение 5-6 часов. Выходы продуктов составляют 84-93% при полной конверсии нитрилов [Патент 2499793 С1, МПК C07D 211/02. Способ получения третичных аминов / Ю.В. Попов, В.М. Мохов, Д.Н. Небыков. - опубл. 27.11.2013].

Недостатками данного способа является длительность и периодическое осуществление процесса.

Наиболее близким аналогом предлагаемого изобретения является способ получения третичных аминов восстановительным аминированием нитрилов в присутствии катализатора, в качестве которого используют наночастицы никеля, получаемые восстановлением хлорида никеля(II) боргидридом натрия in situ при 60-70°С в растворе изопропанола, 1-бутанола или трет-бутанола в течение 10-16 ч. Выходы продуктов составляют 14-54% [Коллоидные и наноразмерные катализаторы в органическом синтезе. XIV. Восстановительное аминирование и амидирование карбонитрилов при катализе наночастицами никеля / В.М. Мохов, Ю.В. Попов, К.В. Щербакова // Журнал общей химии. - 2016. - Т. 86, №4. - С. 609-616].

Недостатками данного способа являются длительность и периодическое осуществление процесса, невозможность регенерации катализатора, а также образование наряду с целевыми третичными аминами значительных количеств енаминов (до 46-70%), что затрудняет выделение продукта.

Задачей заявляемого способа является разработка технологичного способа алкилирования циклических аминов с использованием доступных реагентов.

Техническим результатом является упрощение способа алкилирования циклических аминов и повышение выхода целевых продуктов.

Поставленный результат достигается в новом способе N-алкилирования циклических аминов, заключающемся во взаимодействии циклического амина с нитрилом и молекулярным водородом в присутствии наночастиц никеля при нагревании, при этом, в качестве катализатора используют наночастицы никеля, иммобилизованные на активированном угле, реакционную массу подают на катализатор прямоточно двумя потоками, первый из которых - водород, подаваемый с расходом 6000 л/(кгкат⋅ч), а второй - смесь нитрила и амина, взятых в мольном соотношении 1:2, подаваемый с расходом 3,6 л/(кгкат⋅ч), а реакцию ведут при температуре 120-150°С.

R=CH3CH2-, СН3(СН2)2-, СН3(СН2)3-;

R1=-O, -СН2-.

Сущностью метода является реакция алкилирования циклических аминов нитрилами, которая происходит в присутствии иммобилизованного никелевого нанокатализатора и молекулярного водорода в качестве восстановителя. Достоинствами предлагаемого изобретения являются высокая селективность процесса (89-98%), возможность непрерывного проведения процесса в реакторе вытеснения и осуществления рецикла непрореагировавших исходных веществ, что позволяет упростить способ, а также увеличить выход целевых продуктов.

Способ осуществляется следующим образом.

Для получения катализатора активированный уголь пропитывают водным раствором гексагидрата хлорида никеля(II), отфильтровывают уголь от раствора, содержащего избыток соли никеля, и промывают дистиллированной водой с последующим восстановлением адсорбированного на угле хлорида никеля тетрагидроборатом натрия в воде. Катализатор загружают в реактор, представляющий собой реактор вытеснения, во влажном виде, осушают от воды в токе водорода непосредственно перед реакцией.

Наиболее эффективными является осуществление реакции в 2-кратном мольном избытке циклических аминов. При эквимольном соотношении нитрил : амин наблюдается образование побочных симметричных диалкиламинов - продуктов диспропорционирования образующихся при гидрировании нитрилов первичных аминов. Оптимальным расходом смеси амина и нитрила является 3,6 л/ч на 1 кг катализатора, увеличение расхода приводит к уменьшению конверсии исходных веществ, уменьшение - к уменьшению производительности реактора. Оптимальным расходом водорода является 6000 л/ч на 1 кг катализатора (≈20-кратный мольный избыток), так как использование меньшего количества водорода приводит к росту выхода побочных симметричных диалкиламинов. Дальнейшее увеличение избытка водорода нецелесообразно, так как приводит к уменьшению конверсии исходных веществ.

Изобретение иллюстрируется следующими примерами:

Пример 1. Катализатор получают путем пропитки активированного угля (0,5 г) водным раствором гексагидрата хлорида никеля(II) (0,2 г NiCl2⋅6H2O в 2,5 мл воды) в течение 24 ч. Затем пропитанный уголь отфильтровывают и промывают дистиллированной водой и восстанавливают адсорбированный на угле хлорид никеля тетрагидроборатом натрия (0,2 г) в воде при 20-25°С в течение 20-30 мин. Катализатор загружают в реактор во влажном виде, осушают от воды в токе водорода при 100-120°С непосредственно перед реакцией.

Пример 2. N-пропилморфолин. На катализатор подается водород с расходом 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь пропионитрила (1,5 моль/(кгкат⋅ч)) и морфолина (3 моль/(кгкат⋅ч)). Температура синтеза составляет 120°С. Конверсия пропионитрила - 91,99% Селективность - 88,92%. Выход - 81,80%. Масс-спектр (ЭУ, 70 эВ), m/e (Iотн %): 130 (37) [М+1], 128.8 (7) [М], 99.9 (100), 70.0 (17).

Пример 3. N-бутилморфолин. На катализатор подается водород с расходом 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь бутиронитрила (1,4 моль/(кгкат⋅ч)) и морфолина (2,8 моль/(кгкат⋅ч)). Температура синтеза составляет 120°С. Конверсия бутиронитрила - 91,11%. Селективность - 98,67%. Выход - 89,9%. Масс-спектр (ЭУ, 70 эВ), 143.9 (10) [М+1], 142.7 (3) [М], 99.9 (100), 70.0 (16).

Пример 4. N-бутилпиперидин. На катализатор подается водород с расходом 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь бутиронитрила (1,1 моль/(кгкат⋅ч)) и пиперидина (2,2 моль/(кгкат⋅ч)). Температура синтеза составляет 150°С. Конверсия бутиронитрила - 89,75%. Селективность - 88,50%. Выход - 79,41%. Масс-спектр (ЭУ, 70 эВ), m/e (Iотн, %): 141.9 (6) [М+1], 140.7 (2) [М], 139.9 (5), 98.9 (6), 98.0 (100), 70.0 (10), 42.1 (7).

Пример 5. N-пентилпиперидин. На катализатор подается водород с расходом 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь валеронитрила (1,3 моль/(кгкат⋅ч)) и морфолина (2,6 моль/(кгкат⋅ч)). Температура синтеза составляет 120°С. Конверсия валеронитрила - 85,23%. Селективность - 93,89%. Выход - 80,02%. Масс-спектр (ЭУ, 70 эВ), 146.6 (10) [М+1], 154.8 (1) [М], 99.0 (8), 98.0 (100), 70.0 (15).

Пример 6. N-пентилморфолин. На катализатор подается водород с расходом 6000 л/(кгкат⋅ч). Одновременно с водородом прямоточно с ним с расходом 3,6 л/(кгкат⋅ч) подается смесь валеронитрила (1,2 моль/(кгкат⋅ч)) и морфолина (2,4 моль/(кгкат⋅ч)). Температура синтеза составляет 120°С. Конверсия валеронитрила - 88,53%. Селективность - 95,76%. Выход - 84,78%. Масс-спектр (ЭУ, 70 эВ), 158.1 (28) [М+1], 100.1 (100), 99.2 (7), 70.1 (12)

Таким образом, способ N-алкилирования циклических аминов, при котором взаимодействие циклического амина с нитрилом и молекулярным водородом ведут в присутствии наночастиц никеля при нагревании, иммобилизованных на активированном угле, обеспечивая подачу смесь нитрила и амина, взятых в мольном соотношении 1:2, с расходом 3,6 л/(кгкат⋅ч), а подачу водорода с расходом 6000 л/(кгкат⋅ч), является простым и позволяет увеличить выход целевых продуктов.

Похожие патенты RU2622296C1

название год авторы номер документа
Способ получения вторичных аминов 2016
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Панов Александр Олегович
  • Ширханян Петрос Мисакович
RU2629771C1
Способ получения вторичных аминов 2017
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Панов Александр Олегович
  • Плетнева Мария Юрьевна
  • Давыдова Татьяна Михайловна
RU2654066C1
Способ получения тетрагидрофурфурилового спирта 2019
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Небыков Денис Николаевич
  • Щербакова Ксения Валерьевна
  • Ширханян Петрос Мисакович
  • Панов Александр Олегович
RU2697710C1
Способ восстановления непредельных циклических соединений 2016
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Небыков Денис Николаевич
  • Панов Александр Олегович
  • Донцова Анастасия Алексеевна
RU2619935C1
Способ восстановления непредельных циклических и бициклических соединений 2016
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Небыков Денис Николаевич
  • Донцова Анастасия Алексеевна
  • Щербакова Ксения Валерьевна
RU2622297C1
Способ частичного восстановления циклодиенов и циклотриенов 2016
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Небыков Денис Николаевич
  • Донцова Анастасия Алексеевна
  • Щербакова Ксения Валерьевна
RU2626455C1
Способ восстановления непредельных бициклических соединений 2016
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Небыков Денис Николаевич
  • Панов Александр Олегович
  • Донцова Анастасия Алексеевна
RU2619936C1
Способ восстановления производных стирола 2016
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Небыков Денис Николаевич
  • Панов Александр Олегович
  • Донцова Анастасия Алексеевна
RU2622295C1
Способ восстановления производных стирола 2016
  • Попов Юрий Васильевич
  • Мохов Владимир Михайлович
  • Латышова Снежана Евгеньевна
  • Небыков Денис Николаевич
  • Донцова Анастасия Алексеевна
  • Щербакова Ксения Валерьевна
RU2619590C1
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОАЛКИЛАМИНОВ 2010
  • Мохов Владимир Михайлович
  • Попов Юрий Васильевич
RU2425828C1

Реферат патента 2017 года Способ N-алкилирования циклических аминов

Изобретение относится к способу алкилирования циклических аминов нитрилами, заключающемуся во взаимодействии циклического амина с нитрилом с использованием молекулярного водорода в качестве восстановителя в присутствии наночастиц никеля при нагревании, при этом в качестве катализатора используют наночастицы никеля, иммобилизованные на активированном угле, реагенты подают на катализатор прямоточно двумя потоками, первый из которых - водород, подаваемый с расходом 6000 л/(кгкат⋅ч), а второй - смесь нитрила и амина, взятых в мольном соотношении 1:2, подаваемый с расходом 3,6 л/(кгкат⋅ч), а реакцию ведут при температуре 120-150°С. Технический результат - упрощение способа алкилирования циклических аминов и повышение выхода целевых продуктов. 6 пр.

Формула изобретения RU 2 622 296 C1

Способ N-алкилирования циклических аминов, заключающийся во взаимодействии циклического амина с нитрилом и молекулярным водородом в присутствии наночастиц никеля при нагревании, отличающийся тем, что в качестве катализатора используют наночастицы никеля, иммобилизованные на активированном угле, реагенты подают на катализатор прямоточно двумя потоками, первый из которых - водород, подаваемый с расходом 6000 л/(кгкат⋅ч), второй - смесь нитрила и амина, взятых в мольном соотношении 1:2, подаваемый с расходом 3,6 л/(кгкат⋅ч), а реакцию ведут при температуре 120-150°С.

Документы, цитированные в отчете о поиске Патент 2017 года RU2622296C1

В.М
Мохов, Ю.В
Попов, К.В
Щербакова, "Коллоидные и наноразмерные катализаторы в органическом синтезе
XIV
Восстановительное аминирование и амидирование карбонитрилов при катализе наночастицами никеля ", Журнал общей химии
Токарный резец 1924
  • Г. Клопшток
SU2016A1
- Т
Пюпитр для работы на пишущих машинах 1922
  • Лавровский Д.П.
SU86A1
- С
АППАРАТ ДЛЯ ФОРМОВАНИЯ И УПЛОТНЕНИЯ ТОРФА, ГЛИНЫ И ДРУГИХ ПЛАСТИЧНЫХ МАТЕРИАЛОВ, ВЫПУСКАЕМЫХ ИЗ МУНДШТУКА НЕПРЕРЫВНОЙ ЛЕНТОЙ 1922
  • Ушков Н.А.
SU609A1
ПУТЕВОЙ ШАБЛОН 1928
  • Иконников П.А.
SU12474A1
Стенд замкнутого типа для испытания зубчатых передач 1976
  • Георгиев Анатолий Константинович
  • Соловьева Августа Степановна
  • Шубин Виктор Александрович
  • Рудь Людмила Владимировна
SU599180A1

RU 2 622 296 C1

Авторы

Попов Юрий Васильевич

Мохов Владимир Михайлович

Латышова Снежана Евгеньевна

Панов Александр Олегович

Ширханян Петрос Мисакович

Даты

2017-06-14Публикация

2016-07-13Подача