СПОСОБ ФОРМИРОВАНИЯ ГАБАРИТНО-МАССОВОГО МАКЕТА БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА Российский патент 2017 года по МПК F42B8/24 F42B10/34 

Описание патента на изобретение RU2623753C1

Изобретение относится к области авиации и ракетостроения, а именно к средствам имитации летательных аппаратов для проведения летных испытаний и обучения персонала.

Также из уровня техники известна учебно-летная ракета (патент RU 2365860, МПК F42B 8/24, 27.08.2009), наиболее близкая к предлагаемому изобретению и выбранная в качестве прототипа. Учебно-летная ракета выполнена в виде корпуса, изготовленного из круглой трубы и снабженного узлами крепления к подвесному устройству самолета-носителя, причем толщина трубы позволяет имитировать вес реальной ракеты.

Основным недостатком учебно-летной ракеты является то, что имитация с ее помощью ракет, имеющих некруглое поперечное сечение сложной формы, затруднена из-за сложности изготовления труб такого сечения. Дополнительно, для того чтобы положение центра масс учебно-летной ракеты совпадало с положением центра масс реальной ракеты, требуется использование грузов.

Задачей предлагаемого изобретения является создание способа формирования габаритно-массовых макетов для беспилотных летательных аппаратов, прежде всего управляемых ракет и авиабомб, имеющих сложную (по крайней мере, некруглую) форму сечения миделя.

Задача решается за счет того, что анализируют имитируемое изделие (беспилотный летательный аппарат), в том числе определяют габаритно-массовые характеристики, базовые элементы формы, расположение элементов подвески; определяют количество базовых элементов макета; определяют количество и параметры и изготавливают составные части базовых элементов макета - труб, силовых и регулярных шпангоутов, обшивки; при этом трубы выполнены с переменным по длине труб наружным диаметром, максимальным в местах установки силовых и регулярных шпангоутов (посадочных местах трубы), а силовые и регулярные шпангоуты состоят каждый из наружного контура, форма которого соответствует форме сечения имитируемого изделия, посадочного места под трубу и соединяющих их ребер жесткости, причем форма наружного контура силовых и регулярных шпангоутов либо повторяет форму сечения имитируемого изделия, либо не выходит за его пределы, а форма и диаметр посадочного места под трубу соответствуют посадочным местам трубы; закрепляют силовые и регулярные шпангоуты на трубах таким образом, что на торцах каждой из труб расположены силовые шпангоуты, и наружные контуры всех силовых и регулярных шпангоутов ориентированы одинаково; закрепляют на наружных контурах силовых и регулярных шпангоутов обшивку, образуя базовые элементы макета; соединяют базовые элементы макета торец к торцу и фиксируют; изготавливают и закрепляют на макете дополнительные элементы конструкции макета.

В частном случае осуществления изобретения задача решается за счет того, что в состав дополнительных элементов конструкции макета входят имитатор головного обтекателя, имитатор воздухозаборного устройства, имитаторы аэродинамических поверхностей и элементы подвески.

В другом частном случае осуществления изобретения задача решается за счет того, что на макете устанавливают дополнительную аппаратуру.

В третьем частном случае осуществления изобретения задача решается за счет того, что дополнительная аппаратура представляет собой электрические имитаторы достартовых систем.

В четвертом частном случае осуществления изобретения задача решается за счет того, что дополнительная аппаратура представляет собой элементы системы телеметрии.

Способ формирования габаритно-массового макета беспилотного летательного аппарата позволяет обеспечить требуемую точность воспроизведения габаритно-массовых характеристик и внешней формы имитируемого изделия, обеспечить технологичность изготовления, прочность и жесткость макета.

Сущность предлагаемого изобретения поясняется чертежами (для упрощения чертежей крепежные элементы не показаны, включая упоминаемые в тексте).

На фиг. 1 изображен фронтальный разрез габаритно-массового макета беспилотного летательного аппарата.

На фиг. 2 изображен фрагмент фронтального разреза габаритно-массового макета беспилотного летательного аппарата в увеличенном масштабе, от одного бугеля до другого.

На фиг. 3 изображены два базовых элемента, соединенных вместе, один из них без обшивки, при этом силовые шпангоуты на торцах изображенной конструкции имеют модифицированную форму - посадочные места под бугели.

На чертежах позициями обозначены:

1 - базовый элемент (макета);

2 - бугель;

3 - труба;

4 - силовой шпангоут;

5 - регулярный шпангоут;

6 - бортовой разъем;

7 - наружный контур (указано однократно на фиг. 3);

8 - обшивка;

9 - посадочное место под трубу (указано однократно на фиг. 3);

10 - ребро жесткости (указано однократно на фиг. 3);

11 - макет головного обтекателя.

Анализируют имитируемое изделие. Определяют такие параметры, как габаритно-массовые характеристики (что включает в себя габаритные размеры, массу, положение центра масс), базовые элементы формы макета (такие как зона регулярных сечений, форма сечения миделя, форма и положение головного обтекателя, наружных элементов воздухозаборных устройств, аэродинамических поверхностей), прочие особенности (расположение элементов подвески, бугелей), учитывая конструктивно-силовую схему, требования прочности, условия хранения и эксплуатации. Анализируют массы предполагаемых заготовок составных частей и способы их обработки.

Определяют количество базовых элементов 1 макета. Для этого разбивают на отсеки часть макета, соответствующую зоне регулярных сечений имитируемого изделия, при этом исходят из соображений прочности, технологичности и положения бугелей имитируемого изделия, т.е. макет будет состоять, по крайней мере, из трех отсеков - базовых элементов 1, стыки между которыми находятся в местах расположения бугелей 2. Соответственно, определяют количество составных частей базовых элементов 1 - труб 3, силовых шпангоутов 4 и регулярных шпангоутов 5. Количество и длины труб 3 соответствуют количеству и длинам соответствующих отсеков, количество силовых шпангоутов 4 достаточно, чтобы на каждом стыке базовых элементов 1 было расположено два из них (например, на фиг. 1 изображено десять силовых шпангоутов 4 - по одному силовому шпангоуту 4 на каждый из двух торцов каждого из базовых элементов 1, и первый (крайний левый) базовый элемент 1 дополнительно содержит два силовых шпангоута 4, поддерживающих бортовой разъем 6, при этом на стыках между базовыми элементами 1 расположено шесть из них), количество регулярных шпангоутов 5 таково, чтобы регулярные шпангоуты 5 и стыки между базовыми элементами 1 располагались в зоне регулярных сечений макета, не превышая определенного расстояния между ними. Это расстояние определяют эмпирическим путем, исходя из необходимости поддерживать наружную форму зоны регулярных сечений макета.

Определяют форму силовых шпангоутов 4 и регулярных шпангоутов 5. И силовые 4, и регулярные шпангоуты 5 состоят из наружного контура 7, также представляющего собой посадочное место под обшивку 8, посадочного места под трубу 9 и соединяющих их ребер жесткости 10. Наружный контур 7 и для силовых 4, и для регулярных шпангоутов 5 соответствует форме сечения миделя имитируемого изделия и может иметь произвольную сложную форму. Посадочное место под трубу 9 представляет собой кольцо, внутренний диаметр которого соответствует посадочному диаметру труб 3. Силовые шпангоуты 4 выполнены с достаточной прочностью и жесткостью, чтобы при использовании макета выдерживать нагрузки, которые должно выдерживать имитируемое изделие, а регулярные шпангоуты 5 выполнены с достаточной прочностью и жесткостью, чтобы держать форму макета. Конкретные параметры регулярных 5 и силовых шпангоутов 4 с этой точки зрения определяются расчетом для каждого конкретного имитируемого изделия любым известным способом, что не имеет прямого отношения к сущности изобретения.

Взаимное положение посадочного места под трубу 9 и наружного контура 7 для регулярных 5 и силовых шпангоутов 4 также одинаково, они различаются прочностью, жесткостью и массой. При этом как силовые 4, так и регулярные шпангоуты 5 выполнены приблизительно одинаковыми, однако в определенных случаях форма как тех, так и других может быть модифицирована, в частности, для установки дополнительных элементов макета. Так, несколько силовых шпангоутов 4 выполнены с посадочными местами под бугели 2, а часть внешнего контура части регулярных шпангоутов выполнена усеченной, чтобы позволить установку на соответствующем базовом элементе опорных поверхностей для других элементов конструкции, таких как макеты аэродинамических поверхностей (не показано).

Определяют окончательную форму труб 3, а именно их наружные и внутренние диаметры. Для этого определяют требуемую массу и положение центра масс зоны регулярных сечений макета (соответственно имитируемому изделию) и производят расчет, учитывая массу и расположение прочих элементов зоны регулярных сечений макета, таких как силовые 4 и регулярные шпангоуты 5. Для упрощения расчета массой обшивки 8 можно пренебречь. В результате проведения расчета наружные и внутренние диаметры труб могут быть различными между двумя разными трубами 3 и изменяться в пределах одной трубы 3 по ее длине, но посадочный диаметр труб - диаметр участков, на которых будут расположены шпангоуты 4 и 5 - остается постоянным и соответствующим посадочным местам под трубу 9 шпангоутов 4 и 5 (см. фиг. 2).

Изготавливают составные части базовых элементов макета - шпангоуты 4 и 5 и трубы 3. Изготавливают шпангоуты 4 и 5, например, с помощью фрезерования. Изготавливают трубы 3, отрезая куски заданных длин от одной заготовки, наружный диаметр которой соответствует посадочному диаметру труб, затем, согласно расчету формы труб, обрабатывают их резанием, уменьшая наружные и внутренние диаметры согласно расчету, например, с помощью токарной обработки (таким образом, посадочный диаметр труб также и наибольший наружный диаметр).

Изготавливают базовые элементы макета 1 (отсеки). Закрепляют шпангоуты 4 и 5 на посадочных диаметрах соответствующих им труб 3 таким образом, что силовые шпангоуты 4 расположены на торцах каждой из труб 3, при этом в плоскостях, перпендикулярных продольным осям труб 3, ориентируют все шпангоуты одинаково (поскольку у наружных контуров шпангоутов 4 и 5 в общем случае некруглая форма) с помощью, например, штифтовых соединений (не показано). Фиксируют шпангоуты 4 и 5 любым известным способом. Покрывают базовые элементы 1 обшивкой 9 любым известным способом, например, с помощью гибки и клепаных соединений. Устанавливают бугели 2 в посадочных местах для бугелей.

Соединяют базовые элементы 1 торец к торцу таким образом, чтобы совместить силовые шпангоуты 4 попарно, фиксируют с помощью, например, болтовых соединений. В результате получают макет зоны регулярных сечений, имеющий такие же габаритно-массовые характеристики, как и аналогичная часть имитируемого изделия, однако их моменты инерции будут отличаться.

Изготавливают макеты дополнительных элементов конструкции, например, макет головного обтекателя 11, макет воздухозаборного устройства (не показано) и, при необходимости, прочих частей макета за пределами зоны регулярных сечений с помощью, например, литья, при этом точно имитируют их наружную форму, массу и положения центров масс, макеты аэродинамических поверхностей с помощью, например, фрезерования. Закрепляют макеты дополнительных элементов на макете зоны регулярных сечений любым известным способом, располагая соответственно элементам имитируемого изделия, при этом макеты аэродинамических поверхностей устанавливают с возможностью поворота.

Габаритно-массовый макет беспилотного летательного аппарата прежде всего предназначен для обучения летного состава, однако при необходимости проведения дополнительных испытаний устанавливают на макете дополнительную аппаратуру, например электрические имитаторы достартовых систем, элементы системы телеметрии или другие устройства. Подключают дополнительную аппаратуру через бортовой разъем 6.

Способ формирования габаритно-массового макета беспилотного летательного аппарата предназначен для применения в области авиации и ракетостроения и позволяет обеспечить требуемую точность воспроизведения габаритно-массовых характеристик и внешней формы имитируемого изделия, обеспечить технологичность изготовления, прочность и жесткость макета.

Похожие патенты RU2623753C1

название год авторы номер документа
МОДУЛЬНЫЙ БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2010
  • Юрконенко Алексей Николаевич
RU2422327C1
Способ вращения цилиндров, выполняющих роль крыльев на летательных аппаратах, и беспилотный летательный аппарат для его осуществления 2024
  • Широков Игорь Анатольевич
  • Иванов Николай Николаевич
  • Просвирин Иван Дмитриевич
  • Широков Владимир Игоревич
  • Иванов Алексей Николаевич
  • Лященко Андрей Вадимович
  • Автаев Максим Сергеевич
  • Иванова Екатерина Алексеевна
RU2826746C1
СПОСОБ КОНТРОЛЯ РАБОТОСПОСОБНОСТИ ТРАНСПОРТНО-ПУСКОВЫХ КОНТЕЙНЕРОВ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2023
  • Акимов Михаил Викторович
  • Васюк Виктор Алексеевич
  • Радкевич Павел Геннадьевич
RU2815495C1
Комбинированная динамически-подобная аэродинамическая модель для разных видов аэродинамических испытаний 2023
  • Агуреев Павел Андреевич
  • Бондарев Александр Олегович
  • Булатов Альберт Игоревич
  • Вермель Владимир Дмитриевич
  • Евдокимов Юрий Юрьевич
  • Козлов Владимир Алексеевич
  • Козырев Сергей Юрьевич
  • Назаров Александр Александрович
  • Рязанцев Алексей Васильевич
  • Трифонов Иван Владимирович
  • Усов Александр Викторович
  • Ходунов Сергей Владимирович
RU2808290C1
УНИФИЦИРОВАННЫЙ НЕСУЩИЙ МОДУЛЬ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2010
  • Юрконенко Алексей Николаевич
  • Ефремов Владимир Анатольевич
RU2478061C2
ПЛАНЕР КРЫЛАТОЙ РАКЕТЫ 2004
  • Мельников Валерий Юрьевич
  • Натаров Борис Николаевич
  • Харламов Игорь Васильевич
  • Хомяков Михаил Алексеевич
  • Шумов Юрий Васильевич
  • Лобзов Николай Николаевич
RU2287771C2
Баллон высокого давления для одновременного восприятия внутреннего давления и внешних нагрузок 2023
  • Склезнев Андрей Анатольевич
RU2819476C1
РУЛЕВОЙ БЛОК БЕСПИЛОТНОГО УПРАВЛЯЕМОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2019
  • Ибраев Виктор Вильевич
  • Востротин Иван Степанович
  • Киселева Светлана Васильевна
RU2717327C1
Способ исследования и оптимизации компоновки летательного аппарата и модель для его осуществления 2020
  • Бондарев Александр Олегович
  • Кудрявцев Олег Валентинович
  • Корнушенко Александр Вячеславич
  • Курсаков Иннокентий Александрович
  • Стрельцов Евгений Владимирович
  • Усов Александр Викторович
RU2761543C1
Переходной отсек ракеты-носителя и его опорный шпангоут 2017
  • Асюшкин Владимир Андреевич
  • Ишин Сергей Вячеславович
  • Викуленков Виктор Павлович
  • Яковлев Борис Дмитриевич
  • Федоскин Дмитрий Игоревич
  • Жумаханов Нурсултан Бекетжанович
  • Порешнев Антон Юрьевич
  • Жаворонков Валерий Владиславович
  • Чиханов Евгений Сергеевич
  • Бирюков Андрей Сергеевич
  • Калинин Всеволод Иванович
  • Горовцов Виктор Владимирович
  • Саяпин Виктор Иванович
RU2661631C1

Иллюстрации к изобретению RU 2 623 753 C1

Реферат патента 2017 года СПОСОБ ФОРМИРОВАНИЯ ГАБАРИТНО-МАССОВОГО МАКЕТА БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА

Изобретение относится к области авиации и ракетостроения, а именно к средствам имитации летательных аппаратов для проведения летных испытаний и обучения персонала. Способ состоит в том, что макет формируют из базовых элементов, составляющих зону регулярных сечений, и макетов дополнительных элементов конструкции, таких как головной обтекатель, воздухозаборное устройство и аэродинамические поверхности. Базовые элементы составляют из круглых труб, имеющих переменный диаметр по длине, закрепленных на них шпангоутов, наружный контур которых повторяет форму сечения миделя и обшивки. Базовые элементы имеют такие длины и составлены таким образом, что элементы подвески макета располагаются на стыках между базовыми элементами. Технический результат заключается в повышении точности воспроизведения габаритно-массовых характеристик и внешней формы имитируемого изделия, обеспечении технологичности изготовления, прочности и жесткости макета. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 623 753 C1

1. Способ формирования габаритно-массового макета беспилотного летательного аппарата, при котором анализируют имитируемое изделие (беспилотный летательный аппарат), в том числе определяют габаритно-массовые характеристики, базовые элементы формы, расположение элементов подвески; определяют количество базовых элементов макета; определяют количество и параметры и изготавливают составные части базовых элементов макета - труб, силовых и регулярных шпангоутов, обшивки; при этом трубы выполнены с переменным по длине труб наружным диаметром, максимальным в местах установки силовых и регулярных шпангоутов (посадочных местах трубы), а силовые и регулярные шпангоуты состоят каждый из наружного контура, форма которого соответствует форме сечения миделя имитируемого изделия, посадочного места под трубу и соединяющих их ребер жесткости, причем форма наружного контура силовых и регулярных шпангоутов либо повторяет форму сечения имитируемого изделия, либо не выходит за его пределы, а форма и диаметр посадочного места под трубу соответствуют посадочным местам трубы; закрепляют силовые и регулярные шпангоуты на трубах таким образом, что на торцах каждой из труб расположены силовые шпангоуты, и наружные контуры всех силовых и регулярных шпангоутов ориентированы одинаково; закрепляют на наружных контурах силовых и регулярных шпангоутов обшивку, образуя базовые элементы макета; соединяют базовые элементы макета торец к торцу и фиксируют; изготавливают и закрепляют на макете дополнительные элементы конструкции макета.

2. Способ формирования габаритно-массового макета беспилотного летательного аппарата по п.1, при котором в состав дополнительных элементов конструкции макета входят имитатор головного обтекателя, имитатор воздухозаборного устройства, имитаторы аэродинамических поверхностей и элементы подвески.

3. Способ формирования габаритно-массового макета беспилотного летательного аппарата по п.1, при котором на макете устанавливают дополнительную аппаратуру.

4. Способ формирования габаритно-массового макета беспилотного летательного аппарата по п.3, при котором дополнительная аппаратура представляет собой электрические имитаторы достартовых систем.

5. Способ формирования габаритно-массового макета беспилотного летательного аппарата по п.3, при котором дополнительная аппаратура представляет собой элементы системы телеметрии.

Документы, цитированные в отчете о поиске Патент 2017 года RU2623753C1

УЧЕБНО-ЛЕТНАЯ РАКЕТА 2008
  • Богацкий Владимир Григорьевич
  • Ватолин Валентин Владимирович
  • Волков Владимир Николаевич
  • Гусев Александр Николаевич
  • Ищенко Владимир Владимирович
  • Кравчук Александр Павлович
  • Тарасов Виктор Иванович
RU2365860C1
УЧЕБНО-ТРЕНИРОВОЧНЫЙ СНАРЯД 1995
  • Гремпель В.И.
  • Денежкин Г.А.
  • Конюхов А.А.
  • Макаровец Н.А.
  • Проскурин Н.М.
  • Семилет В.В.
  • Федосеева С.Н.
RU2087839C1
ЛЕТАТЕЛЬНЫЙ АППАРАТ 2012
  • Фосс Андреас
RU2548444C2
Способ определения проницаемости горных пород, слагающих разрез буровых скважин 1948
  • Дахнов В.Н.
  • Латышов М.Г.
  • Печерников В.Ф.
SU77240A1
US 3221656 A, 07.12.1965
US 4374493 A, 22.02.1983.

RU 2 623 753 C1

Авторы

Комарова Людмила Викторовна

Даты

2017-06-29Публикация

2016-02-19Подача