ИНСТРУМЕНТАЛЬНЫЙ УСИЛИТЕЛЬ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ Российский патент 2017 года по МПК H03F3/45 

Описание патента на изобретение RU2624565C1

Изобретение относится к области электроники, измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков.

В современной информационно-измерительной технике, приборостроении, датчиковых системах, различных аналого-цифровых интерфейсах находят широкое применение так называемые инструментальные (измерительные) усилители (ИУ), которые обеспечивают прецизионное усиление дифференциального сигнала (ud) и повышенное ослабление синфазной составляющей входных напряжений (uc) [1].

Одним из наиболее перспективных методов построения ИУ является применение в их структуре так называемых мультидифференциальных операционных усилителей (МОУ) [2,3], которые (для работы при низких температурах) реализуются на основе классических дифференциальных каскадов на полевых транзисторах [4-21] с резистором местной отрицательной обратной связи. При этом для повышения линейности ИУ резистор местной отрицательной обратной связи выбирается достаточно высокоомным (1-10 кОм), что существенно ухудшает один из важнейших параметров МОУ и ИУ - коэффициент ослабления входного синфазного сигнала (Kос.сф.).

Ближайшим прототипом заявляемого устройства является дифференциальный усилитель, представленный в статье «Входные каскады дифференциальных и мультидифференциальных операционных усилителей с высоким ослаблением синфазного напряжения» (А.Е. Титов, С.Г. Крутчинский, М.С. Цыбин), изданной по итогам IV Всероссийской научно-технической конференции «Проблемы разработки перспективных микро- и наноэлектронных систем - 2010» (МЭС-2010, стр. 542, рис. 10). Он содержит (фиг. 1) первый 1 входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым 2 входом устройства, исток подключен к стоку первого 3 вспомогательного транзистора первого дифференциального каскада, а сток через первый 4 двухполюсник нагрузки связан с первой 5 шиной источника питания и соединен с первым 6 выходом, второй 7 входной полевой транзистор первого дифференциального каскада, затвор которого соединен со вторым 8 входом устройства, исток подключен к стоку второго 9 вспомогательного транзистора первого дифференциального каскада, а сток через второй 10 двухполюсник нагрузки связан с первой 5 шиной источника питания и соединен с вторым 11 выходом, причем между истоками первого 1 входного полевого транзистора первого дифференциального каскада и второго 7 входного полевого транзистора первого дифференциального каскада включен резистор местной отрицательной обратной связи 12 первого дифференциального каскада, первый 13 входной полевой транзистор второго дифференциального каскада, затвор которого соединен с третьим 14 входом устройства, исток подключен к стоку первого 15 вспомогательного транзистора второго дифференциального каскада, а сток связан с первым 6 выходом, второй 16 входной полевой транзистор второго дифференциального каскада, затвор которого соединен с четвертым 17 входом устройства, исток подключен к стоку второго 18 вспомогательного транзистора второго дифференциального каскада, а сток соединен со вторым 11 выходом, причем между истоками первого 13 входного полевого транзистора второго дифференциального каскада и второго 16 входного полевого транзистора второго дифференциального каскада включен резистор местной отрицательной обратной связи 19 второго дифференциального каскада, вторую 20 шину источника питания.

Существенный недостаток известного ИУ состоит в том, что он имеет невысокое ослабление входных синфазных сигналов, что обусловлено применением в его схеме полевых JFet транзисторов с управляющим p-n переходом, способных работать при низких температурах.

Основная задача предполагаемого изобретения состоит в повышении коэффициента ослабления входного синфазного сигнала при работе ИУ в диапазоне низких температур.

Поставленная задача достигается тем, что в инструментальном усилителе фиг. 1, содержащем первый 1 входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым 2 входом устройства, исток подключен к стоку первого 3 вспомогательного транзистора первого дифференциального каскада, а сток через первый 4 двухполюсник нагрузки связан с первой 5 шиной источника питания и соединен с первым 6 выходом, второй 7 входной полевой транзистор первого дифференциального каскада, затвор которого соединен со вторым 8 входом устройства, исток подключен к стоку второго 9 вспомогательного транзистора первого дифференциального каскада, а сток через второй 10 двухполюсник нагрузки связан с первой 5 шиной источника питания и соединен с вторым 11 выходом, причем между истоками первого 1 входного полевого транзистора первого дифференциального каскада и второго 7 входного полевого транзистора первого дифференциального каскада включен резистор местной отрицательной обратной связи 12 первого дифференциального каскада, первый 13 входной полевой транзистор второго дифференциального каскада, затвор которого соединен с третьим 14 входом устройства, исток подключен к стоку первого 15 вспомогательного транзистора второго дифференциального каскада, а сток связан с первым 6 выходом, второй 16 входной полевой транзистор второго дифференциального каскада, затвор которого соединен с четвертым 17 входом устройства, исток подключен к стоку второго 18 вспомогательного транзистора второго дифференциального каскада, а сток соединен со вторым 11 выходом, причем между истоками первого 13 входного полевого транзистора второго дифференциального каскада и второго 16 входного полевого транзистора второго дифференциального каскада включен резистор местной отрицательной обратной связи 19 второго дифференциального каскада, вторую 20 шину источника питания, предусмотрены новые элементы и связи - затвор первого 3 вспомогательного транзистора первого дифференциального каскада подключен к истоку первого 21 выходного транзистора, затвор второго 9 вспомогательного транзистора первого дифференциального каскада соединен с истоком второго 22 выходного транзистора, затвор которого соединен с затвором первого 21 выходного транзистора и подключен к источнику напряжения смещения 23, затвор первого 15 вспомогательного транзистора второго дифференциального каскада соединен с истоком первого 21 выходного транзистора, затвор второго 18 вспомогательного транзистора второго дифференциального каскада соединен с истоком второго 22 выходного транзистора, сток первого 21 выходного транзистора соединен с первым 6 выходом, а сток второго 22 выходного транзистора соединен со вторым 11 выходом, исток первого 3 вспомогательного транзистора первого дифференциального каскада связан с затвором первого 3 вспомогательного транзистора первого дифференциального каскада, исток второго 9 вспомогательного транзистора первого дифференциального каскада связан с затвором второго 9 вспомогательного транзистора первого дифференциального каскада, исток первого 15 вспомогательного транзистора второго дифференциального каскада связан с затвором первого 15 вспомогательного транзистора второго дифференциального каскада, исток второго 18 вспомогательного транзистора второго дифференциального каскада связан с затвором второго 18 вспомогательного транзистора второго дифференциального каскада, между второй 20 шиной источника питания и истоком первого 21 выходного транзистора включен первый 24 токостабилизирующий двухполюсник, между второй 20 шиной источника питания и истоком второго 22 выходного транзистора включен второй 25 токостабилизирующий двухполюсник, причем второй 11 и первый 6 выходы соединены с соответствующими входами выходного каскада 26, выход которого 27, являющийся потенциальным выходом устройства 27, связан с четвертым 17 входом устройства через цепь общей отрицательной обратной 28, а третий 14 вход устройства соединен с общей шиной источника питания.

На чертеже фиг. 1 показана схема ИУ-прототипа, а на чертеже фиг. 2 схема заявляемого ИУ в соответствии с п. 1 формулы изобретения, способного работать при низких температурах за счет применения JFet транзисторов.

На чертеже фиг. 3 приведена схема заявляемого ИУ в соответствии с п. 2, п. 3 формулы изобретения.

На чертеже фиг. 4 представлена схема одного входного каскада заявляемого ИУ фиг. 3, которая используется для аналитического расчета преимуществ предлагаемого устройства.

На чертеже фиг. 5 представлена схема одного дифференциального каскада ИУ-прототипа фиг. 1 в среде PSpice, реализованная на элементах аналогового базового матричного кристалла АБМК_1_3, выпускаемого ОАО «Интеграл» (г. Минск). Данная схема была использована для моделирования работы ИУ с входным синфазным сигналом.

На чертеже фиг. 6 приведена часть схемы фиг. 3 (один входной каскад) в среде PSpice на моделях АБМК_1_3, в которой моделировалась передача на выход out входного синфазного сигнала V3.

На чертеже фиг. 7 показана частотная зависимость коэффициентов ослабления входного синфазного сигнала входных каскадов заявляемого ИУ фиг. 6 и ИУ-прототипа фиг. 5. Из данных графиков следует, что в заявляемом ИУ коэффициент ослабления входного синфазного сигнала улучшается на 40 дБ (т.е. в 100 раз).

Инструментальный усилитель для работы при низких температурах фиг. 2 содержит первый 1 входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым 2 входом устройства, исток подключен к стоку первого 3 вспомогательного транзистора первого дифференциального каскада, а сток через первый 4 двухполюсник нагрузки связан с первой 5 шиной источника питания и соединен с первым 6 выходом, второй 7 входной полевой транзистор первого дифференциального каскада, затвор которого соединен со вторым 8 входом устройства, исток подключен к стоку второго 9 вспомогательного транзистора первого дифференциального каскада, а сток через второй 10 двухполюсник нагрузки связан с первой 5 шиной источника питания и соединен с вторым 11 выходом, причем между истоками первого 1 входного полевого транзистора первого дифференциального каскада и второго 7 входного полевого транзистора первого дифференциального каскада включен резистор местной отрицательной обратной связи 12 первого дифференциального каскада, первый 13 входной полевой транзистор второго дифференциального каскада, затвор которого соединен с третьим 14 входом устройства, исток подключен к стоку первого 15 вспомогательного транзистора второго дифференциального каскада, а сток связан с первым 6 выходом, второй 16 входной полевой транзистор второго дифференциального каскада, затвор которого соединен с четвертым 17 входом устройства, исток подключен к стоку второго 18 вспомогательного транзистора второго дифференциального каскада, а сток соединен со вторым 11 выходом, причем между истоками первого 13 входного полевого транзистора второго дифференциального каскада и второго 16 входного полевого транзистора второго дифференциального каскада включен резистор местной отрицательной обратной связи 19 второго дифференциального каскада, вторую 20 шину источника питания. Затвор первого 3 вспомогательного транзистора первого дифференциального каскада подключен к истоку первого 21 выходного транзистора, затвор второго 9 вспомогательного транзистора первого дифференциального каскада соединен с истоком второго 22 выходного транзистора, затвор которого соединен с затвором первого 21 выходного транзистора и подключен к источнику напряжения смещения 23, затвор первого 15 вспомогательного транзистора второго дифференциального каскада соединен с истоком первого 21 выходного транзистора, затвор второго 18 вспомогательного транзистора второго дифференциального каскада соединен с истоком второго 22 выходного транзистора, сток первого 21 выходного транзистора соединен с первым 6 выходом, а сток второго 22 выходного транзистора соединен со вторым 11 выходом, исток первого 3 вспомогательного транзистора первого дифференциального каскада связан с затвором первого 3 вспомогательного транзистора первого дифференциального каскада, исток второго 9 вспомогательного транзистора первого дифференциального каскада связан с затвором второго 9 вспомогательного транзистора первого дифференциального каскада, исток первого 15 вспомогательного транзистора второго дифференциального каскада связан с затвором первого 15 вспомогательного транзистора второго дифференциального каскада, исток второго 18 вспомогательного транзистора второго дифференциального каскада связан с затвором второго 18 вспомогательного транзистора второго дифференциального каскада, между второй 20 шиной источника питания и истоком первого 21 выходного транзистора включен первый 24 токостабилизирующий двухполюсник, между второй 20 шиной источника питания и истоком второго 22 выходного транзистора включен второй 25 токостабилизирующий двухполюсник, причем второй 11 и первый 6 выходы соединены с соответствующими входами выходного каскада 26, выход которого 27, являющийся потенциальным выходом устройства 27, связан с четвертым 17 входом устройства через цепь общей отрицательной обратной 28, а третий 14 вход устройства соединен с общей шиной источников питания.

В схеме фиг. 2, в соответствии с п. 2 формулы изобретения в качестве источника напряжения смещения 23 используется вторая 20 шина источника питания, а цепь общей отрицательной обратной связи 28 содержит первый 29 и второй 30 дополнительное резисторы.

В схеме фиг. 3, в соответствии с п. 3 формулы изобретения, исток первого 3 вспомогательного транзистора первого дифференциального каскада связан с затвором первого 3 вспомогательного транзистора первого дифференциального каскада через первый 29 дополнительный резистор, исток второго 9 вспомогательного транзистора первого дифференциального каскада связан с затвором второго 9 вспомогательного транзистора первого дифференциального каскада через второй 30 дополнительный резистор, исток первого 15 вспомогательного транзистора второго дифференциального каскада связан с затвором первого 15 вспомогательного транзистора второго дифференциального каскада через третий 31 дополнительный резистор, исток второго 18 вспомогательного транзистора второго дифференциального каскада связан с затвором второго 18 вспомогательного транзистора второго дифференциального каскада через четвертый 32 дополнительный резистор.

Рассмотрим работу частного случая схемы фиг. 3, представленного на чертеже фиг. 4, когда выходные сигналы снимаются с первого 6 (Вых. 1) и второго 11 (Вых. 2) выходов, а на первый 2 и второй 8 входы устройства подаются одинаковые синфазные напряжения (uc=uc1=uc2).

В результате воздействия входного синфазного сигнала uc=uc1=uc2 на первый 2 и второй 8 входы устройства изменяются токи стоков и истоков первого 3 вспомогательного транзистора первого дифференциального каскада, второго 9 вспомогательного транзистора первого дифференциального каскада, первого 1 входного полевого транзистора первого дифференциального каскада, второго 7 входного полевого транзистора первого дифференциального каскада:

где μ3≈μ9≈10-2-10-3, - коэффициенты внутренней обратной связи первого 3 и второго 9 вспомогательных транзисторов первого дифференциального каскада;

R29, R30 - сопротивления первого 29 и второго 30 дополнительных резисторов.

Токи iu3 и iu9 передаются в истоковые цепи первого 21 и второго 22 выходных транзисторов и вызывают соответствующие изменения их токов стока. В результате приращения токов в первом 4 и втором 10 двухполюсниках нагрузки определяются формулами:

где α21≈1, α22≈1 - коэффициент передачи по току истока первого 21 и второго 22 выходных транзисторов.

Как следствие, коэффициенты передачи входного синфазного сигнала для первого 6 (Вых. 1) и второго 11 (Вых. 2) выходов можно найти из уравнений:

В схеме ИУ-прототипа аналогичные параметры имеют следующие значения:

Таким образом, при введении новых элементов и связей между ними коэффициенты передачи синфазного сигнала с первого 2 и второго 8 входов устройства на первый 6 и второй 11 выходы уменьшаются в N=80÷100 раз, где .

Коэффициент передачи дифференциального напряжения входного каскада на первом 1 и втором 7 входных полевых транзисторах первого дифференциального каскада определяется формулой

где R12 - сопротивление резистора местной отрицательной обратной связи 12 первого дифференциального каскада;

R4, R10 - сопротивления первого 4 и второго 10 двухполюсников нагрузки.

Если выбрать Kdl≈1, то коэффициент ослабления входного синфазного сигнала (Kос.сф.) в предлагаемой схеме определяется уравнением

Сравнительное компьютерное моделирование схем фиг. 5 и фиг. 6, показывает (фиг. 7), что заявляемый ИУ имеет более чем в 100 раз лучшее значение коэффициента ослабления входного синфазного сигнала. Это существенно снижает погрешности ИУ при работе с сигналами, имеющими синфазную составляющую.

Литература

1. Авербух В. Инструментальные усилители / В. Авербух // Схемотехника, №1 (3), 2001. - С. 26-29; Схемотехника, №2 (4), 2001. - С. 22-24.

2. Патент RU 2571578 фиг. 1, фиг. 3, фиг. 4.

3. Прокопенко Н.Н. Основные свойства, параметры и базовые схемы включения мультидифференциальных операционных усилителей с высокоимпедансным узлом / Н.Н. Прокопенко, О.В. Дворников, П.С. Будяков // Электронная техника. Серия 2. Полупроводниковые приборы. Выпуск 2 (233), 2014 г. - С. 53-64.

4. Патент US 6.617.922 fig.3.

5. Патент US 6.469.576 fig.2.

6. Патент US 7.170.349 fig.2.

7. Патент US 6.628.168 fig.1, fig.2.

8. Патент US 5.990.737 fig.7.

9. Патент US 7.199.612 fig.4.

10. Патент US 6.977.526 fig.l.

11. Заявка на патент US 2009/0206929 fig. 5.

12. 3аявка на патент US 2008/0150636 fig.3D.

13. 3аявка на патент US 2003/0132803 fig.7.

14. 3аявка на патент US 2006/0244530 fig.2.

15. Патент US 6.388.519 fig.1.

16. Патент US 6.011.436 fig.4.

17. Патент US 6.559.720 fig.4.

18. 3аявка на патент US 2008/0186091 fig.4.

19. 3аявка на патент US 2013/0099782 fig.2.

20. Патент US 5.510.745.

21. Патент US 7.145.359 fig.4.

Похожие патенты RU2624565C1

название год авторы номер документа
ИНСТРУМЕНТАЛЬНЫЙ УСИЛИТЕЛЬ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА 2016
  • Прокопенко Николай Николаевич
  • Игнашин Андрей Алексеевич
  • Бугакова Анна Витальевна
  • Пахомов Илья Викторович
RU2616570C1
ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 2016
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Пахомов Илья Викторович
  • Игнашин Андрей Алексеевич
RU2621286C1
ПРОМЕЖУТОЧНЫЙ КАСКАД CJFET ОПЕРАЦИОННОГО УСИЛИТЕЛЯ С ПАРАФАЗНЫМ ТОКОВЫМ ВЫХОДОМ 2019
  • Прокопенко Николай Николаевич
  • Жук Алексей Андреевич
  • Дроздов Дмитрий Геннадьевич
RU2712411C1
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР 2020
  • Жук Алексей Андреевич
  • Прокопенко Николай Николаевич
  • Титов Алексей Евгеньевич
RU2724921C1
НИЗКОТЕМПЕРАТУРНЫЙ ВХОДНОЙ КАСКАД ОПЕРАЦИОННОГО УСИЛИТЕЛЯ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ С УПРАВЛЯЮЩИМ P-N ПЕРЕХОДОМ 2020
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Жук Алексей Андреевич
  • Пахомов Илья Викторович
RU2721943C1
МУЛЬТИДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ ДЛЯ РАДИАЦИОННО СТОЙКОГО БИПОЛЯРНО-ПОЛЕВОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА 2014
  • Дворников Олег Владимирович
  • Прокопенко Николай Николаевич
  • Крутчинский Сергей Георгиевич
  • Титов Алексей Евгеньевич
RU2566964C1
Операционный усилитель на основе широкозонных полупроводников 2023
  • Кузнецов Дмитрий Владимирович
  • Фролов Илья Владимирович
  • Сергеенко Марсель Алексеевич
  • Прокопенко Николай Николаевич
RU2822157C1
ДИФФЕРЕНЦИАЛЬНЫЙ КАСКАД НА КОМПЛЕМЕНТАРНЫХ JFET ПОЛЕВЫХ ТРАНЗИСТОРАХ С ПОВЫШЕННЫМ ОСЛАБЛЕНИЕМ ВХОДНОГО СИНФАЗНОГО СИГНАЛА 2019
  • Прокопенко Николай Николаевич
  • Жук Алексей Андреевич
  • Бугакова Анна Витальевна
  • Пахомов Илья Викторович
RU2710296C1
БИПОЛЯРНО-ПОЛЕВОЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ 2016
  • Прокопенко Николай Николаевич
  • Бугакова Анна Витальевна
  • Игнашин Андрей Алексеевич
  • Мальцева Джамиля Адалетовна
RU2642337C1
ВХОДНОЙ КАСКАД ДИФФЕРЕНЦИАЛЬНОГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ С ПАРАФАЗНЫМ ВЫХОДОМ НА КОМПЛЕМЕНТАРНЫХ ПОЛЕВЫХ ТРАНЗИСТОРАХ 2020
  • Прокопенко Николай Николаевич
  • Дворников Олег Владимирович
  • Жук Алексей Андреевич
  • Овсепян Елена Владимировна
RU2721945C1

Иллюстрации к изобретению RU 2 624 565 C1

Реферат патента 2017 года ИНСТРУМЕНТАЛЬНЫЙ УСИЛИТЕЛЬ ДЛЯ РАБОТЫ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

Изобретение относится к области измерительной техники и может быть использовано в качестве прецизионного устройства усиления сигналов различных датчиков. Технический результат заключается в повышении коэффициента ослабления входного синфазного сигнала при работе в диапазоне низких температур. Указанный результат достигается посредством инструментального усилителя для работы при низких температурах, который содержит первый входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым входом устройства, исток подключен к стоку первого вспомогательного транзистора первого дифференциального каскада, а сток через первый двухполюсник нагрузки связан с первой шиной источника питания и соединен с первым выходом, второй входной полевой транзистор первого дифференциального каскада. Между второй шиной источника питания и истоком второго выходного транзистора включен второй токостабилизирующий двухполюсник, причем второй и первый выходы соединены с соответствующими входами выходного каскада, выход которого, являющийся потенциальным выходом устройства, связан с четвертым входом устройства через цепь общей отрицательной обратной, а третий вход устройства соединен с общей шиной источников питания. 2 з.п. ф-лы, 7 ил.

Формула изобретения RU 2 624 565 C1

1. Инструментальный усилитель для работы при низких температурах, содержащий первый (1) входной полевой транзистор первого дифференциального каскада, затвор которого соединен с первым (2) входом устройства, исток подключен к стоку первого (3) вспомогательного транзистора первого дифференциального каскада, а сток через первый (4) двухполюсник нагрузки связан с первой (5) шиной источника питания и соединен с первым (6) выходом, второй (7) входной полевой транзистор первого дифференциального каскада, затвор которого соединен со вторым (8) входом устройства, исток подключен к стоку второго (9) вспомогательного транзистора первого дифференциального каскада, а сток через второй (10) двухполюсник нагрузки связан с первой (5) шиной источника питания и соединен с вторым (11) выходом, причем между истоками первого (1) входного полевого транзистора первого дифференциального каскада и второго (7) входного полевого транзистора первого дифференциального каскада включен резистор местной отрицательной обратной связи (12) первого дифференциального каскада, первый (13) входной полевой транзистор второго дифференциального каскада, затвор которого соединен с третьим (14) входом устройства, исток подключен к стоку первого (15) вспомогательного транзистора второго дифференциального каскада, а сток связан с первым (6) выходом, второй (16) входной полевой транзистор второго дифференциального каскада, затвор которого соединен с четвертым (17) входом устройства, исток подключен к стоку второго (18) вспомогательного транзистора второго дифференциального каскада, а сток соединен со вторым (11) выходом, причем между истоками первого (13) входного полевого транзистора второго дифференциального каскада и второго (16) входного полевого транзистора второго дифференциального каскада включен резистор местной отрицательной обратной связи (19) второго дифференциального каскада, вторую (20) шину источника питания, отличающийся тем, что затвор первого (3) вспомогательного транзистора первого дифференциального каскада подключен к истоку первого (21) выходного транзистора, затвор второго (9) вспомогательного транзистора первого дифференциального каскада соединен с истоком второго (22) выходного транзистора, затвор которого соединен с затвором первого (21) выходного транзистора и подключен к источнику напряжения смещения (23), затвор первого (15) вспомогательного транзистора второго дифференциального каскада соединен с истоком первого (21) выходного транзистора, затвор второго (18) вспомогательного транзистора второго дифференциального каскада соединен с истоком второго (22) выходного транзистора, сток первого (21) выходного транзистора соединен с первым (6) выходом, а сток второго (22) выходного транзистора соединен со вторым (11) выходом, исток первого (3) вспомогательного транзистора первого дифференциального каскада связан с затвором первого (3) вспомогательного транзистора первого дифференциального каскада, исток второго (9) вспомогательного транзистора первого дифференциального каскада связан с затвором второго (9) вспомогательного транзистора первого дифференциального каскада, исток первого (15) вспомогательного транзистора второго дифференциального каскада связан с затвором первого (15) вспомогательного транзистора второго дифференциального каскада, исток второго (18) вспомогательного транзистора второго дифференциального каскада связан с затвором второго (18) вспомогательного транзистора второго дифференциального каскада, между второй (20) шиной источника питания и истоком первого (21) выходного транзистора включен первый (24) токостабилизирующий двухполюсник, между второй (20) шиной источника питания и истоком второго (22) выходного транзистора включен второй (25) токостабилизирующий двухполюсник, причем второй (11) и первый (6) выходы соединены с соответствующими входами выходного каскада (26), выход которого (27), являющийся потенциальным выходом устройства (27), связан с четвертым (17) входом устройства через цепь общей отрицательной обратной (28), а третий (14) вход устройства соединен с общей шиной источников питания.

2. Инструментальный усилитель для работы при низких температурах по п. 1, отличающийся тем, что в качестве источника напряжения смещения (23) используется вторая (20) шина источника питания.

3. Инструментальный усилитель для работы при низких температурах по п. 1, отличающийся тем, что исток первого (3) вспомогательного транзистора первого дифференциального каскада связан с затвором первого (3) вспомогательного транзистора первого дифференциального каскада через первый (29) дополнительный резистор, исток второго (9) вспомогательного транзистора первого дифференциального каскада связан с затвором второго (9) вспомогательного транзистора первого дифференциального каскада через второй (30) дополнительный резистор, исток первого (15) вспомогательного транзистора второго дифференциального каскада связан с затвором первого (15) вспомогательного транзистора второго дифференциального каскада через третий (31) дополнительный резистор, исток второго (18) вспомогательного транзистора второго дифференциального каскада связан с затвором второго (18) вспомогательного транзистора второго дифференциального каскада через четвертый (32) дополнительный резистор.

Документы, цитированные в отчете о поиске Патент 2017 года RU2624565C1

ВХОДНОЙ КАСКАД МУЛЬТИДИФФЕРЕНЦИАЛЬНОГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ ДЛЯ РАДИАЦИОННО-СТОЙКОГО БИПОЛЯРНО-ПОЛЕВОГО ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА 2014
  • Прокопенко Николай Николаевич
  • Крутчинский Сергей Георгиевич
  • Титов Алексей Евгеньевич
  • Бугакова Анна Витальевна
RU2571578C1
US 6617922 B2, 09.09.2003
US 6469576 B2, 22.10.2002
US 7170349 B2, 30.01.2007
US 6628168 B2, 30.09.2003
US 7199612 B2, 03.04.2007
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1

RU 2 624 565 C1

Авторы

Прокопенко Николай Николаевич

Игнашин Андрей Алексеевич

Пахомов Илья Викторович

Бугакова Анна Витальевна

Даты

2017-07-04Публикация

2016-02-11Подача