Группа изобретений относится к области химии, в частности к азотным удобрениям на основе карбамида и аммиачной селитры с задаваемой скоростью (продолжительностью) растворения в почве, и может быть пригодно для выращивания различных видов сельскохозяйственных культур на всех типах почв, преимущественно на кислых.
Основными формами азота в азотных удобрениях являются аммонийная, нитратная и амидная. Аммонийный азот усваивается растениями из почвы с наибольшей легкостью, нитратный азот играет доминирующую роль в питании растений, восстанавливается в тканях растения сначала до нитритов, затем до аммиака, перерабатываемого в аминокислоты и белки. Амидная форма азота используется растениями лишь после перехода его в аммонийную и нитратную формы, осуществляемого в процессе аммонификации и нитрификации с помощью почвенных микроорганизмов, и поэтому рекомендуется вносить заблаговременно.
Основными видами азотных удобрений являются карбамид - К (ГОСТ 2081-2010), содержащий азот в амидной форме, аммиачная селитра - АС (ГОСТ 2-2013) и известково-аммиачная селитра - ИАС (ТУ 2181-001-77381580-2006), в которых азот находится в аммонийной и нитратной формах.
Основным недостатком карбамида и аммиачной селитры является высокая скорость растворения и последующего вымывания их из почвы водой, приводящая к потере практически половины или даже более вводимого в почву азота. Кроме того, постоянное использование их в качестве основных азотных удобрений приводит к постепенному подкислению почв.
В промышленности производится также раствор карбамидо-аммиачной смеси - КАС (ТУ 2181-629-00209023-02), содержащий все основные формы азота. Существование карбамидо-аммиачной смеси в твердом виде при нормальных условиях невозможно, т.к. в примерно равном соотношении К:АС=(50-30%):(50-70%) смесь плавится уже при ~40°C, а при более низких температурах, жадно поглощая влагу из воздуха, превращается в незамерзающий раствор (минимальная температура кристаллизации ТКР=-26,2°C достигается при соотношении К:АС:H2O=28%:35%:37%).
Основным недостатком раствора КАС является наличие значительного количества балластной воды, что обуславливает дополнительные затраты на их перевозку, необходимость больших емкостей для хранения, а также специального оборудования для внесения на поля.
Известно медленнорастворимое гранулированное комплексное азотно-магниевое удобрение, содержащее смесь водорастворимых ингредиентов азота в виде карбамида, магния, выраженного как оксид магния (MgO), и серы, причем ингредиенты составляют, масс. %: азота - 26-38 и магния - 7-17 в соотношении N:MgO=1:(0,2-0,6) масс. и серы - 1-3 в качестве микроэлемента, в составе гомогенной композиции карбамида с гидроксидсульфатом магния (ГОС) формулы: nMg(OH)2⋅MgSO4-mH2O, где n=2, 3 и 5, m=6-8, определяющие скорость растворения удобрения в почве [патент RU №2557776, МПК С05С 9/00, C05D 5/00, опубл. 27.07.2015].
Недостатком данного удобрения является наличие в нем лишь амидной формы азота, которая используется растениями только после перехода его в аммонийную и нитратную формы.
Наиболее близким по совокупности существенных признаков является гранулированное азотное удобрение на основе аммиачной селитры и карбамида с сульфатной добавкой, выбранное в качестве прототипа, характеризующееся тем, что гранулы содержат ядро из аммиачной селитры, внешнюю оболочку из карбамида и промежуточный слой из сульфата аммония [патент RU №2394799, МПК С05С 1/00, С05С 13/00, опубл. 20.07.2010]. Основным преимуществом известного удобрения является наличие в нем всех трех основных форм азота.
Недостатком прототипа является высокая скорость его растворения. При внесении в почву оно быстро растворяется, так же как гранулы карбамида или аммиачной селитры, следовательно, потери азота не снижаются (в результате вымывания в нижние горизонты почвы и попадания в грунтовые воды), что приводит к серьезным экологическим проблемам, например к эвтрофикации водоемов.
Известен способ получения гранулированного азотного удобрения на основе аммиачной селитры и карбамида, при котором на гранулы аммиачной селитры последовательно наносят сульфат аммония в виде водной суспензии с одновременной сушкой и плав карбамида с последующим охлаждением целевого продукта, при этом массовое соотношение «карбамид:аммиачная селитра» в целевом продукте поддерживают в пределах К:АС=(0,5÷1,5):1 [патент RU №2394799, МПК С05С 1/00, С05С 13/00, опубл. 20.07.2010].
Недостатком известного способа является сложность технологии, требующей использования сложного крупногабаритного оборудования и высоких температур.
Наиболее близким аналогом предлагаемого способа получения гранулированного азотного удобрения является способ получения гранулированного комплексного азотно-магниевого удобрения на основе карбамида, включающий смешение карбамида и оксида магния, подогрев смеси, охлаждение и гранулирование кристаллизирующегося удобрения, при этом карбамид вводят в водный раствор сульфата магния с концентрацией 16-20%, затем смесь размешивают, подогревают до полного растворения карбамида, в полученный раствор добавляют оксид магния в соотношении N:MgO=1:(0,2-0,6) масс., полученную суспензию перемешивают до образования гомогенной сметанообразной массы, которую разливают на плоскую поверхность толщиной 1-4 мм и охлаждают; затем, в зависимости от влажности и скорости твердения ГОС, смесь гранулируют различными способами, классификацией отбирают товарную фракцию 1-4 мм, нестандартные гранулы размером менее 1 мм и более 4 мм возвращают на стадию перемешивания до образования гомогенной массы для последующего гранулирования [патент RU №2557776, МПК С05С 9/00, C05D 5/00, опубл. 27.07.2015]. Этот способ позволяет получить азотное удобрение с регулируемой скоростью растворения.
Однако получаемое этим способом удобрение содержит только одну форму азота - амидную, в то время как растения испытывают в первую очередь потребность в нитратной и аммонийных формах.
Основной задачей, на решение которой направлена заявляемая группа изобретений, является создание и получение удобрения с регулируемой скоростью (продолжительностью) растворения в почве, содержащего все основные формы азота в наиболее оптимальных соотношениях, адаптированного для выращивания различных видов сельскохозяйственных культур с разной продолжительностью вегетационного периода, требующих различных скоростей (продолжительности) растворения удобрения.
Задача решается гранулированным азотным удобрением, включающим карбамид и аммиачную селитру, причем гранулы содержат смесь карбамида и аммиачной селитры в составе гомогенной композиции с гидроксиднитратом магния (ГОН) формулы nMg(OH)2⋅Mg(NO3)2⋅mH2O, где n=1, 3, 5 и m=0-8, определяющие скорость растворения удобрения в почве. Удобрение содержит 21-35 мас. % азота и 6-16 мас. % магния в пересчете на MgO, при этом массовое соотношение N:MgO=1:(0,2-0,6).
Задача решается способом получения указанного гранулированного азотного удобрения, включающим смешение каустического магнезита с азотным удобрением в количестве, обеспечивающем массовое соотношение N:MgO=1:(0,2-0,6), перемешивание полученной суспензии до образования гомогенной сметанообразной массы, охлаждение и гранулирование, в котором, согласно изобретению, сначала каустический магнезит смешивают с раствором азотной кислоты при массовом отношении HNO3:MgO=0,6-1,8 до образования нитрата и гидроксида магния, в полученную суспензию при перемешивании вводят раствор карбамида и аммиачной селитры при массовом отношении К:АС=0,5-1,5, подогревают до 90-120°C до образования гомогенной сметанообразной массы, причем общее количество воды, поступающей с раствором азотной кислоты и раствором карбамида и аммиачной селитры, должно обеспечивать избыточное ее количество 10-20% от общей массы смеси.
Техническим результатом является получение гранулированного азотного удобрения с регулируемой скоростью (продолжительностью) растворения в почве, содержащего все основные формы азота в оптимальном соотношении.
Сущность изобретения заключается в следующем.
Предлагаемое гранулированное азотное удобрение содержит смесь карбамида с аммиачной селитрой и дополнительно магния, в качестве микроэлемента, выраженного как оксид магния (MgO), где ингредиенты составляют, масс. %: азота 21-35% при массовом соотношении NNH2:NNH4:NNO3=1:(0,25-0,75):(0,3-1,4) и дополнительно 6-16% MgO при массовом соотношении N:MgO=1:(0,2-0,6) в составе гомогенной композиции карбамида и аммиачной селитры с гидроксиднитратом магния (ГОН) формулы nMg(OH)2⋅Mg(NO3)2⋅mH2O, где n=1,3 и 5, m=0-8, определяющие скорость растворения удобрения в почве. Возможность существования гранулированной смеси карбамида с аммиачной селитрой в нормальных условиях обеспечивается лишь благодаря затворению их цементом Сореля. При этом компоненты цемента Сореля представляют собой не балласт, а являются элементами питания растений, кроме того, Mg(OH)2 одновременно способствует нейтрализации кислотности аммиачной селитры и почвы в целом.
Способ получения гранулированного азотного удобрения включает смешение азотной кислоты с каустическим магнезитом в массовом отношении HNO3:MgO=0,6-1,8, т.е. при 100-500%-ном избытке MgO, в результате смесь разогревается, что способствует увеличению скорости реакции гидратации MgO и образования суспензии Mg(OH)2 в растворе Mg(NO3)2. Суспензию выдерживают некоторое время (преимущественно 30-60 мин) для образования основного количества Mg(OH)2, который сразу взаимодействует с нитратом магния с образованием цемента Сореля, далее в нее вводят раствор карбамида и аммиачной селитры при массовом отношении К:АС=(0,5÷1,5). Смесь подогревают до 90-120°C для полной гидратации оксида магния и удаления избыточной свободной воды, не связанной с цементом Сореля, до достижения примерно 20-30%-ной концентрации Mg(NO3)2 и образования гомогенной сметанообразной массы, которую охлаждают и гранулируют различными способами.
Состав цемента Сореля определяется массовым отношением азотной кислоты к каустическому магнезиту. При отношении HNO3:MgO≈1,8, т.е при 100%-ном избытке MgO, необходимого для реакции нейтрализации HNO3 с получением лишь Mg(NO3)2 (стехиометрическое отношение HNO3:MgO=3,2), образуется преимущественно Mg(OH)2⋅Mg(NO3)2⋅(0-8)H2O (ГОН-1), а при отношении HNO3:MgO≈0,6 (т.е. при 500%-ном избытке MgO), конечным продуктом является 5Mg(OH)2⋅Mg(NO3)2⋅0-8H2O (ГОН-5). Цемент Сореля состоит преимущественно из наиболее стабильных гидроксиднитратов магния состава 3Mg(OH)2⋅Mg(NO3)2⋅(0-8)H2O и 5Mg(OH)2⋅Mg(NO3)2⋅(0-8)H2O, в то же время возможны их смеси с гидроксиднитратами магния другого состава, а также с Mg(OH)2.
Выбор способа смешения сырьевых компонентов в указанной выше последовательности обусловлен необходимостью предварительного получения основных компонентов цемента Сореля - Mg(NO3)2 и Mg(OH)2.
Концентрацию раствора карбамида и аммиачной селитры подбирают с учетом концентрации азотной кислоты для обеспечения оптимальной концентрации Mg(NO3)2 в пределах 20-30% и избыточного количества свободной воды в пределах 10-20%. В случае большого избытка добавляемой воды выше 20% образование цемента Сореля не наблюдается, т.к. происходит расслоение осадка нерастворимого Mg(OH)2 и раствора над ним, состоящего из карбамида, аммиачной селитры и нитрата магния. При недостатке воды (избыточное ее количество менее 10%) гидратация MgO протекает не полностью, оставшаяся внутри твердых продуктов часть исходного MgO при хранении, взаимодействуя с влагой воздуха, медленно превращается в Mg(OH)2, что может привести к образованию трещин в гранулах и, следовательно, к уменьшению их прочности.
Оптимальную температуру нагревания сырьевой смеси поддерживают в пределах 90-120°C с целью наиболее полной гидратации MgO и удаления несвязанной воды. При температуре ниже 90°C смесь трудно поддается перемешиванию, т.к. это практически температура плавления смеси и возникает опасность начала схватывания продукта в момент выгрузки из реактора. Верхний предел нагревания ограничивается высокой скоростью потери воды в виде пара, а также вероятностью разложения азотных удобрений с выделением аммиака.
Прочность гранул получаемого удобрения при наличии оптимального количества воды продолжает возрастать непрерывно в течение 1-4 недель вследствие гидратации небольших количеств остаточного MgO влагой воздуха с образованием Mg(OH)2 и соответствующих гидроксиднитратов магния, а также перекристаллизации их из метастабильных форм в стабильные формы.
Скорость растворения удобрения в почве задают отношением азота, содержащегося в карбамиде и аммиачной селитре, к MgO, содержащемуся в Mg(OH)2 и Mg(NO3)2 цемента Сореля. Регулируемое массовое соотношение питательных компонентов в оптимальных пределах N:MgO=1:(0,2-0,6) позволяет достигать дополнительного положительного эффекта, что особенно важно для потребителей удобрений, стремящихся обеспечить оптимальные соотношения питательных компонентов для конкретных сельскохозяйственных культур и почв (в настоящее время эта цель достигается только посредством приготовления смешанных удобрений, однако скорость растворения азотных удобрений и потери азота при этом не уменьшаются).
Щелочной характер удобрения благодаря наличию Mg(OH)2 позволяет эффективно использовать его на всех типах почв, преимущественно на кислых, площади которых постоянно увеличиваются из-за использования аммиачной селитры в качестве основного азотного удобрения.
Дополнительные данные, которые не ограничивают объем изобретения, а также дополнительные преимущества становятся очевидными из примеров.
Пример 1.
В смеситель загружали 9,3 г 60%-ной азотной кислоты, в которую добавляли при перемешивании 8,4 г каустического магнезита марки ПМК-75, содержащего 6,3 г MgO (HNO3:MgO=0,9, что соответствует 300%-ному избытку MgO из расчета необходимости получения гидроксиднитрата магния состава 3Mg(OH)2⋅Mg(NO3)2⋅8H2O) и выдерживали при перемешивании 30 мин. В образовавшуюся суспензию вносили 107,5 г 84%-ного раствора карбамида с аммиачной селитрой при массовом отношении К:АС=0,5, подогревали до 90-120°C, выдерживали 10 мин до образования сметанообразной массы влажностью ~10%. Гранулирование этой массы в процессе ее остывания и медленного затвердевания осуществляли с помощью экструдера, влажные гранулы сушили при комнатных условиях и просеиванием отбирали товарную фракцию 1-4 мм, нестандартные гранулы размером менее 1 мм и более 4 мм возвращали в цикл и использовали при последующем гранулировании.
Полное удаление свободной воды из гранул и достижение их максимальной прочности при комнатной температуре составило 2 недели. В результате получили 112,6 г гранулированного азотного удобрения, содержащего 18% ГОН-3 и 81% азотных удобрений (К+АС) следующего состава: N=31,7% (NNH2:NNH4:NNO3=1:0,75:0,84), дополнительно MgO=6,3% при отношении питательных компонентов MgO:N=0,2 мас. и суммарным содержанием NMg=38%.
Пример 2.
Гранулированное азотное удобрение получали аналогично примеру 1, при котором азотную кислоту взяли в количестве 17,5 г, каустический магнезит - 15,7 г, 79%-ный раствор карбамида с аммиачной селитрой - 104,4 г из расчета получения питательных компонентов с массовым отношением MgO:N=0,4. Гранулирование продукта осуществляли следующим образом: сметанообразную массу разливали на плоскую поверхность, охлаждали до комнатной температуры, сушили в комнатных условиях для удаления свободной влаги, далее сухой полностью затвердевший продукт дробили, просеиванием отбирали товарную фракцию 1-4 мм, нестандартные фракции зерен удобрений размером менее 1 мм и более 4 мм возвращали в цикл и использовали при последующем гранулировании. В результате получили 123,7 г гранулированного азотного удобрения, содержащего 31% ГОН-3 и 76% азотных удобрений (К+АС) следующего состава: N=27,2% (NNH2:NNH4:NNO3=1:0,75:0,94), дополнительно MgO=10,8% при отношении питательных компонентов MgO:N=0,4 мас. и суммарным содержанием NMg=38%.
Пример 3.
Гранулированное азотное удобрение получали аналогично примеру 1, при котором азотную кислоту взяли в количестве 25 г, каустический магнезит - 22,4 г, 74%-ный раствор карбамида с аммиачной селитрой - 101,4 г из расчета получения питательных компонентов с массовым отношением MgO:N=0,6 мас. Гранулирование продукта осуществляли как методом экструзии - после начала схватывания смеси в течение 1 час, так и методом дробления затвердевшей плитки толщиной 1-4 мм - после полного удаления из нее свободной влаги в течение 1-3 суток. В результате получили 133,8 г гранулированного азотного удобрения, содержащего 42% ГОН-3 и 68% азотных удобрений (К+АС) следующего состава: N=23,8% (NNH2:NNH4:NNO3=1:0,75:1,04), дополнительно MgO=14,2% при отношении питательных компонентов MgO:N=0,6 мас. и суммарным содержанием NMg=38%.
Примеры 4-6 проводили аналогично примерам 1-3, при этом использовали раствор КАС с массовым отношением К:АС=1.
Примеры 7-9 проводили аналогично примерам 1-3, при этом использовали раствор КАС с массовым отношением К:АС=1,5.
Примеры получения гранулированного азотного удобрения в виде гомогенной композиции карбамида и аммиачной селитры с цементом Сореля состава 3Mg(OH)2⋅Mg(NO3)2⋅8H2O (ГОН-3) при указанных условиях, с использованием 60%-ной азотной кислоты, приведены в табл. 1.
При получения гранулированного азотного удобрения, содержащего цемент Сореля состава ГОН-1 и ГОН-5, твердеющих при других соотношениях азотной кислоты и каустического магнезита, состав конечных продуктов при массовом отношении MgO:N=0,2-0,6 меняется в следующих пределах:
- при 100%-ном избытке MgO: ГОН-1 - 26-56% и К+АС - 41-73% [N=21-32%, NNH2:NNH4:NNO3=1:(0,25-0,75):(0,36-1,4), MgO=6-13%, NMg=34-38%];
- при 500%-ном избытке MgO: ГОН-5 - 16÷38% и К+АС - 59÷83% [N=25-35%, NNH2:NNH4:NNO3=1:(0,25-0,75):(0,3-0,94), MgO=7-16%, NMg=39-42%].
При получении гранулированного азотного удобрения с использованием азотной кислоты другой концентрации состав конечных продуктов не изменяется.
Содержание азота в предлагаемых удобрениях (N=21-35%), по сравнению с раствором КАС даже несколько выше, в то же время они содержат значительное количество магния, являющегося одним из наиболее важных элементов питания растений наряду с азотом, фосфором и калием.
Несмотря на некоторое снижение содержания общего азота по сравнению с прототипом, в предлагаемом способе получается азотное удобрение с регулируемой скоростью растворения, содержащее все основные формы азота в наиболее оптимальном массовом соотношении NNH2:NNH4:NNO3=1:(0,25-0,75):(0,3÷1,4), где содержание нитратного азота, который играет доминирующую роль в питании растений, значительно превышает содержание аммонийного, потребность в котором меньше. С учетом содержания дополнительно 6-16 мас. % MgO в качестве микроэлемента, суммарное количество элементов питания достигает NMg=34-42 мас. %.
Основные физико-химические свойства гранулированных азотных удобрений оценивали по скорости растворения гранул средних размеров 2-3 мм (τ0,5 - время растворения гранул на 50%), их прочности (через 4 недели с момента получения удобрения, т.е. после окончания процесса твердения), скорости влагопоглощения при различных относительных влажностях воздуха W (W=60-80%) и величине рН 1%-ного раствора удобрения. Результаты испытаний представлены в табл. 2.
Как видно из табл. 2, предлагаемые NMg-удобрения по сравнению с исходными карбамидом и аммиачной селитрой имеют значительно меньшую скорость растворения, следовательно, изменяя (подбирая) количество добавляемого MgO (соответственно, состав цемента Сореля), можно получить удобрения с регулируемой скоростью растворения.
Значительно высокая прочность гранул способствует уменьшению пылеобразования удобрения.
Высокие значения рН~10 при постоянном внесении удобрений в кислую почву будут способствовать ее нейтрализации.
Сравнительно низкая скорость влагопоглощения предлагаемых удобрений способствует уменьшению слеживаемости гранул. В условиях продолжительной выдержки во влажной среде они увлажняются, но не теряют свою форму, в то время как смесь карбамида с аммиачной селитрой превращается в раствор при W=80% уже в течение 2 недель, а при W=60% - в течение 1 мес.
Таким образом, разработано гранулированное азотное удобрение с регулируемой скоростью растворения, содержащее карбамид и аммиачную селитру с оптимальным соотношением основных форм азота и способ его получения.
Удобрение пригодно для выращивания различных видов сельскохозяйственных культур с разной продолжительностью вегетационного периода, требующих различных скоростей (продолжительности) растворения удобрения. Кроме того, благодаря наличию Mg(OH)2, предлагаемое удобрение обладает нейтрализующим эффектом, что позволяет эффективно использовать его на кислых почвах.
название | год | авторы | номер документа |
---|---|---|---|
Гранулированное комплексное бесхлорное азотно-калийно-магниевое удобрение и способ его получения | 2018 |
|
RU2672408C1 |
ГРАНУЛИРОВАННОЕ КОМПЛЕКСНОЕ АЗОТНО-МАГНИЕВОЕ УДОБРЕНИЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2014 |
|
RU2557776C1 |
Гранулированное серосодержащее азотно-калийное удобрение и способ его получения | 2020 |
|
RU2747779C1 |
СПОСОБ ПОЛУЧЕНИЯ БЕЗНИТРАТНОГО ЖИДКОГО КОМПЛЕКСНОГО УДОБРЕНИЯ НА ОСНОВЕ АММИАЧНОЙ СЕЛИТРЫ (ВАРИАНТЫ) | 2011 |
|
RU2478086C1 |
СПОСОБ ПОЛУЧЕНИЯ ИЗВЕСТКОВО-АММИАЧНОЙ СЕЛИТРЫ | 2015 |
|
RU2614874C2 |
СПОСОБ ПОЛУЧЕНИЯ АММИАЧНО-НИТРАТНОГО УДОБРЕНИЯ | 2003 |
|
RU2228919C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО СЛОЖНОГО МИНЕРАЛЬНОГО УДОБРЕНИЯ | 2009 |
|
RU2407721C1 |
ГРАНУЛИРОВАННОЕ УДОБРЕНИЕ, СОДЕРЖАЩЕЕ ВОДОРАСТВОРИМЫЕ ФОРМЫ АЗОТА, МАГНИЯ И СЕРЫ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2007 |
|
RU2455270C2 |
КАЛЬЦИНИРОВАННАЯ АММИАЧНАЯ СЕЛИТРА ДЛЯ УЛУЧШЕНИЯ ПЛОДОРОДИЯ ПОЧВЫ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2003 |
|
RU2235084C1 |
СПОСОБ ПОЛУЧЕНИЯ АЗОТНОГО УДОБРЕНИЯ | 2005 |
|
RU2290391C1 |
Изобретения относятся к сельскому хозяйству. Гранулированное азотное удобрение включает карбамид и аммиачную селитру, причем гранулы содержат смесь карбамида и аммиачной селитры в составе гомогенной композиции с гидроксиднитратом магния формулы nMg(OH)2·Mg(NO3)2·mH2O, где n=1, 3, 5 и m=0-8, определяющие скорость растворения удобрения в почве. Способ получения гранулированного азотного удобрения включает смешение каустического магнезита с азотным удобрением в количестве, обеспечивающем массовое соотношение N:MgO=1:(0,2-0,6), перемешивание полученной суспензии до образования гомогенной сметанообразной массы, охлаждение и гранулирование. Изобретения позволяют получить гранулированное азотное удобрение с регулируемой скоростью (продолжительностью) растворения в почве, содержащее все основные формы азота в оптимальном соотношении. 2 н. и 1 з.п. ф-лы, 2 табл., 9 пр.
1. Гранулированное азотное удобрение, включающее карбамид и аммиачную селитру, отличающееся тем, что гранулы содержат смесь карбамида и аммиачной селитры в составе гомогенной композиции с гидроксиднитратом магния формулы nMg(OH)2·Mg(NO3)2·mH2O, где n=1, 3, 5 и m=0-8, определяющие скорость растворения удобрения в почве.
2. Удобрение по п. 1, отличающееся тем, что содержит 21-35 мас.% азота при массовом соотношении NNH2:NNH4:NNO3=1:(0,25-0,75):(0,3-1,4) и дополнительно 6-16 мас.% магния в пересчете на MgO при соотношении N:MgO=1:(0,2-0,6) масс.
3. Способ получения гранулированного азотного удобрения по п. 1, включающий смешение каустического магнезита с азотным удобрением в количестве, обеспечивающем массовое соотношение N:MgO=1:(0,2-0,6), перемешивание полученной суспензии до образования гомогенной сметанообразной массы, охлаждение и гранулирование, отличающийся тем, что сначала каустический магнезит смешивают с раствором азотной кислоты при массовом отношении HNO3:MgO=0,6-1,8, до образования преимущественно нитрата магния, в полученную суспензию при перемешивании вводят раствор карбамида и аммиачной селитры при массовом отношении карбамида к аммиачной селитре 0,5-1,5, подогревают до 90-120°C до образования гомогенной сметанообразной массы, причем общее количество воды, поступающей с раствором азотной кислоты и раствором карбамида и аммиачной селитры, должно обеспечивать избыточное ее количество 10-20% от общей массы смеси.
ГРАНУЛИРОВАННОЕ КОМПЛЕКСНОЕ АЗОТНО-МАГНИЕВОЕ УДОБРЕНИЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2014 |
|
RU2557776C1 |
ГРАНУЛИРОВАННОЕ АЗОТНОЕ УДОБРЕНИЕ НА ОСНОВЕ АММИАЧНОЙ СЕЛИТРЫ И КАРБАМИДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2008 |
|
RU2394799C1 |
WO 1997000840 A1, 09.01.1997. |
Авторы
Даты
2017-07-11—Публикация
2015-12-09—Подача