СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ УГОЛЬНОЙ ПЫЛИ В АТМОСФЕРНОМ ВОЗДУХЕ Российский патент 2017 года по МПК G01N21/17 

Описание патента на изобретение RU2626602C1

Изобретение относится к химии, экологии, а именно к способам исследования токсичных химических веществ в окружающей среде и установлении их контроля.

Селективное количественное измерение одного из видов пылевых аэрозолей в атмосферном воздухе в присутствии других является актуальнейшей проблемой, поскольку выбрасываемые промышленными предприятиями загрязняющие токсичные вещества формируют трудноразделяемый микст различных органических и неорганических веществ.

Оценка того или иного вида пыли проводится по установленной для атмосферного воздуха предельно-допустимой концентрации (ПДК). В настоящее время разработано ПДК для порядка 30 видов пыли: взвешенные вещества (неидентифицированная пыль), неорганическая пыль с различным содержанием диоксида кремния, пыль асбестосодержащая, абразивная пыль, зерновая пыль, пыль растительного происхождения, пыль хлопковая, пыль полиметаллическая свинцово-цинкового производства, пыль крахмала и др. Присутствие в атмосферном воздухе нескольких видов пыли осложняет задачу их раздельного селективного определения.

Методика определения пыли в воздухе, представленная в п. 5.2.6 [1], основана на количественном гравиметрическом определении. Гравиметрическое определение не позволяет селективно определить все составляющие.

В литературе не описано способов разделения сложного микста пылевых аэрозолей для селективного определения его составляющих - органического или неорганического происхождения.

Уголь представляет собой органическое вещество, подвергшееся медленному разложению под действием биологических и геологических процессов. Основа образования угля - битумные массы и в меньшей степени (непромышленные запасы) - органические остатки растительного происхождения. В зависимости от степени метаморфизма и удельного количества углерода в угле различают четыре его типа: бурые (лигниты), каменные угли, антрациты и графиты. В западных странах имеет место несколько иная классификация - лигниты, суббитуминозные угли, битуминозные угли, антрациты и графиты соответственно. Все ископаемые промышленной добычи угли классифицируются на марки: А - антрацит; Б - бурый; Г - газовый; Д - длиннопламенный; Ж - жирный; К - коксовый; ОС - отощенный спекающийся; СС - слабоспекающийся; Т - тощий [2].

Бурый уголь - твердый ископаемый уголь, образовавшийся из торфа, содержит 65-70% углерода, 43% воды и до 50% летучих веществ, наиболее молодой из ископаемых углей.

Каменный уголь - горная порода, представляющая собой продукт глубокого метаморфизма битумных масс. По химическому составу каменный уголь представляет смесь высокомолекулярных полициклических ароматических соединений с высокой массовой долей углерода, а также летучих веществ с небольшими количествами минеральных примесей, при сжигании угля образующих золу. Ископаемые угли отличаются друг от друга соотношением слагающих их компонентов, что определяет их теплоту сгорания. Содержание углерода в каменном угле, в зависимости от его сорта, составляет от 75% до 95%, до 12% влаги (3-4% внутренней), до 32% летучих веществ.

Антрацит - уголь наиболее высокой степени углефикации. Образуется из каменного угля при повышении давления и температуры на глубинах порядка 6 километров.

Природный уголь представляет собой гетерогенный материал сложного состава, в основе которого лежит макромолекулярная структура органических соединений, связанных с процессами метаморфизма [3-5]. Вследствие неоднородности и сложности структуры угля, выделение отдельных составляющих и их количественное измерение практически неосуществимо и, в целом, удлинит время подготовки, удорожит процесс исследования (идентификации, количественного измерения).

Известно изобретение по патенту RU 2526254 С2 «Способ растворения угля, биомассы и других твердых органических материалов в перегретой воде» [6], в котором рассматриваются процессы солюбилизации твердых органических материалов путем взаимодействия твердого органического материала, такого как уголь или биомасса, с окислителем (источники образования молекулярного кислорода, например, перекись водорода) в перегретой воде (температура от 100°C до 374°C) с получением раствора угля (или биомассы).

Таким образом, раствор угля можно использовать для количественного измерения с помощью спектров поглощения - фотометрированием. При этом следует подобрать условия фотометрирования: аналитическую длину волны из спектра поглощения и толщину слоя раствора.

Наиболее близким по технической сущности к предлагаемому способу (прототипом) количественного определения является способ химического определения пыли взрывчатых веществ по содержанию основного действующего вещества - диалюминия триоксида - спектрофотометрическим методом [7], заключающийся в отборе проб воздуха на фильтры АФА-ХП-10, переводе в растворимое состояние диалюминия триоксида сплавлением с пиросульфатом калия, фотометрирование раствора комплексного окрашенного соединения, полученного в результате взаимодействия иона алюминия с арсеназо-1 при выбранной аналитической длине волны поглощения.

Поэтому на основании изложенного задачей изобретения является разработка способа подготовки образца пылевого аэрозоля, уловленного из воздуха, без идентификации отдельных составляющих с последующим его измерением. В качестве возможного варианта отделения угля от других составляющих пылевого микста рассматривается применение его физико-химических свойств (растворимость, удельный вес и пр.). Технический результат заключается в солюбилизации твердых органических материалов с образованием одного солюбилизированного органического растворимого вещества. В солюбилизированное органическое растворимое вещество превращается свыше 95% твердого органического материала.

Заявляется способ количественного определения угольной пыли в атмосферном воздухе в присутствии других видов пыли спектрофотометрическим методом, отличающийся тем, что экстракцию угольной пыли из пылевого микста атмосферного воздуха проводят хинолином при нагревании до 250-280°C и обработке ультразвуком с частотой 30-65 кГц в течение 10-15 минут, при этом получают две фазы: угольную пыль в растворе, неорганическую пыль - нерастворимый осадок; угольную пыль в растворе хинолина определяют спектрофотометрически при аналитической длине волны поглощения раствора угля 622 нм, содержание угля определяют по предварительно построенной градуировочной характеристике - зависимости C=f(D), где С - концентрация определяемого вещества (мкг/мл); D - оптическая плотность исследуемого раствора.

Указанная задача решается в заявляемом способе количественного определения угля (угольной пыли) в пылевом атмосферном миксте следующим образом.

Фильтр АФА-ВП-20 (АФА-ХП-20) с отобранной пробой угольной пыли из атмосферного воздуха помещают в термостойкий стеклянный стакан объемом 20-25 см3, приливают 10 мл хинолина, нагревают до 250-280°C. Стакан помещают в УЗ-установку (30-65 кГц) и выдерживают 10-15 минут. Раствор охлаждают и измеряют оптическую плотность при аналитической длине волны 622 нм в кварцевой кювете с крышкой и толщиной слоя 10 мм. Измерение проводят относительно оптически чистого хинолина.

Содержание угля в анализируемом объеме определяют по предварительно построенной градуировочной характеристике - зависимости C=f(D), где С - концентрация определяемого вещества (мкг/мл); D - оптическая плотность исследуемого раствора вещества (безразмерная величина).

Градуировочную характеристику устанавливают с помощью градуировочного коэффициента, который рассчитывают по формуле:

где Ci - концентрация стандартного раствора (мкг/мл);

Di - оптическая плотность стандартного раствора;

n - количество стандартных градуировочных растворов.

Концентрацию угля в растворе определяют по формуле:

C=D⋅K⋅В⋅P,

где D - оптическая плотность измеряемой пробы;

K - градуировочная характеристика;

В - объем пробы, взятой для анализа, мл;

P - коэффициент разбавления пробы.

Концентрацию угля в пробе атмосферного воздуха (мг/м3) вычисляют по формуле:

Cв=C⋅V1/V0,

где С - количество угля, найденное в анализируемом объеме пробы, мкг;

V - общий объем пробы, см3;

Vo - объем атмосферного воздуха (дм3), приведенный к нормальным условиям согласно газовым законам Бойля-Мариотта и Гей-Люссака по формуле:

Vo=Vt×273×Р/(tн+1)×Рн,

где Vt - объем воздуха, отобранный для анализа, дм3;

Р - измеренное в день отбора барометрическое давление, мм рт. ст. (или Па);

t - температура воздуха в месте отбора пробы, °C.

Нормальные условия (tн, Рн), определенные IUPAC (Международным союзом практической и прикладной химии):

Тн=273,15 K (0°C)

Рн=760 мм рт. ст. (101325 Па)

Данный способ количественного определения угольной пыли может быть представлен на схеме (Фиг. 1).

Основанием для предлагаемого технического решения задачи изобретения являются результаты проведенного нами исследования. Приведем пример количественного определения угольной пыли заявляемым способом.

Пример 1. Количественное измерение угля в искусственной смеси пыли с частицами 2-3 мкм, все образцы в смеси - в равных долях: уголь К, уголь ТЖ, уголь Г, асбестосодержащая, алюмосиликат, кремний диоксид кристаллический (кварц), кремний диоксид аморфный (аэросил), глинозем, древесная пыль, пыль железа.

Навеска образца для исследования составляет 1,0000 мг. Фактически уголь составляет 0,3000 мг.

Согласно описанному способу экстракции навеска заливается хинолином и раствор подогревается до 250°C, разогретый раствор помещается в УЗ-установку УЗ-0,25 и обрабатывается в течение 15 минут ультразвуком с частотой 65 кГц, охлаждается. Для количественного анализа взята проба, разбавленная в 10 раз раствором хинолина, которая фотометрируется при длине волны поглощения 622 нм в кварцевой кювете с крышкой и толщиной слоя 10 мм. По градуировочной характеристике проведен расчет концентрации угля в растворе:

Оптическая плотность анализируемого раствора D=0,22

C=D⋅K⋅B⋅Р=0,21×29,1×5,0×10=305,55 мкг в пробе

Заданное количество 0,3000 мг=300,00 мкг в пробе

Проверка точности количественного определения угля:

|Х'-Сд|=Kk,

где X' - средний результат контрольного измерения содержания угля в исследуемой пробе, мкг;

Сд - концентрация угля в стандартном образце (градуировочном растворе), мкг.

Качество контрольной процедуры признают удовлетворительным при выполнении условия:

Kk≤K,

где К - норматив контроля точности, вычисляемый по формуле:

K=0,84АСд (мкг),

где А - абсолютные погрешности определения массовой концентрации исследуемого компонента соответственно в пробе. Абсолютная погрешность количественного измерения угля в пробе составляет (по экспериментальным данным) 25%.

Расчеты: 305,55-300,00=5,55 (мкг).

К=0,84⋅0,25⋅300,0=63,0 (мкг).

Kk≤K; 5,55<63,0.

Результат удовлетворительный.

ЛИТЕРАТУРА

1. РД 52.04.186-89. «Руководство по контролю загрязнения атмосферы» / Государственный комитет по гидромететорологии. Министерство здравоохранения СССР // М. - 1991. - 695 с.

2. О.Е. Шестакова. «Визуальная диагностика природных видов и технологических марок ископаемых углей».

3. ГОСТ 9414.1-94 (ИСО 7404.1-84). Уголь каменный и антрацит. Методы петрографического анализа. Часть 1. Словарь терминов / Межгосударственный Совет по стандартизации метрологии и сертификации. // Минск. - 1994. - 16 с.

4. ГОСТ 25543-88. Угли бурые, каменные и антрациты. Классификация по генетическим и технологическим параметрам. // М., ГКС СССР. - 1988.

5. Жемчужников Ю.А., Гинсбург А.И. Основы петрологии углей / Ю.А. Жемчужников. // М.: Изд-во АН СССР, 1960. - 400 с.

6. RU 2526254 С2.

7. МУК 4.1.2466-09. «Измерение массовых концентраций алюминия и диалюминия триоксида (оксида алюминия) в пыли взрывчатых веществ воздуха рабочей зоны методом фотометрии».

Похожие патенты RU2626602C1

название год авторы номер документа
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ УГОЛЬНОЙ ПЫЛИ В ВОЗДУХЕ 2016
  • Слышкина Татьяна Вадимовна
RU2641043C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ НИТРАТНЫХ СОЕДИНЕНИЙ В АТМОСФЕРНОМ ВОЗДУХЕ 2011
  • Грязев Михаил Васильевич
  • Хрупачев Александр Геннадьевич
  • Хадарцев Александр Агубечирович
  • Платонов Владимир Владимирович
  • Ганюков Сергей Петрович
  • Алешичева Лариса Ивановна
RU2485510C1
СПОСОБ СПЕКТРОФОТОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИЙ МИНЕРАЛЬНЫХ МАСЕЛ В ВОЗДУХЕ 2015
  • Гребенкина Светлана Валерьевна
  • Слышкина Татьяна Вадимовна
RU2600766C1
СПОСОБ ОПРЕДЕЛЕНИЯ АМОРФНОГО ДИОКСИДА КРЕМНИЯ В ПРОМЫШЛЕННЫХ АЭРОЗОЛЯХ, СОДЕРЖАЩИХ ЭЛЕМЕНТНЫЙ КРЕМНИЙ 2014
  • Зыкова Валентина Александровна
  • Величковский Борис Тихонович
  • Слышкина Татьяна Вадимовна
  • Симонова Ольга Владимировна
RU2554784C1
СПОСОБ ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА АНАЛИЗИРУЕМОГО ВЕЩЕСТВА С ИСПОЛЬЗОВАНИЕМ ВИДЕОИЗМЕРИТЕЛЬНОГО КОМПЛЕКСА 1995
  • Холстов В.И.
  • Кучинский Е.В.
  • Маханьков Ю.Д.
  • Щербин С.Н.
  • Попов С.В.
  • Ведехин А.В.
RU2130171C1
Способ определения алкил-динитрофенолов в биологическом материале 1990
  • Шорманов Владимир Камбулатович
  • Нестерова Алла Владимировна
SU1786426A1
СПОСОБ ОПРЕДЕЛЕНИЯ 1,1-БИС- β -ОКСИЭТИЛ)-2-ГЕПТАДЕЦЕНИЛ-2-ИМИДАЗОЛИНИЙ ХЛОРИДА И 1- b -ОКСИЭТИЛ)-2-ГЕПТАДЕЦЕНИЛ-2-ИМИДАЗОЛИНА В ВОЗДУХЕ 1990
  • Трубникова Л.И.
SU1831941A3
Способ количественного определения содержания 4-гидрокси-2,2,6,6-тетраметилпиперидин-1-оксила в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии 2021
  • Уланова Татьяна Сергеевна
  • Зайцева Нина Владимировна
  • Карнажицкая Татьяна Дмитриевна
  • Старчикова Мария Олеговна
RU2756549C1
СПОСОБ МОНИТОРИНГА ЗАГРЯЗНЕНИЯ ПРИРОДНЫХ СРЕД ТЕХНОГЕННЫМ ИСТОЧНИКОМ 2012
  • Девятова Анна Юрьевна
  • Рапута Владимир Федотович
RU2532365C2
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ О-, М- ИЛИ N-АМИНОБЕНЗОЙНОЙ КИСЛОТЫ 1991
  • Чернова Р.К.
  • Гусакова Н.Н.
  • Еременко С.Н.
  • Кошелева Л.Г.
  • Маврин А.В.
RU2011969C1

Реферат патента 2017 года СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ УГОЛЬНОЙ ПЫЛИ В АТМОСФЕРНОМ ВОЗДУХЕ

Изобретение относится к химии, экологии, а именно к способам исследования токсичных химических веществ в окружающей среде и установлении их контроля. Способ заключается в подготовке образцов пыли, отобранной из атмосферного воздуха, с помощью экстракции хинолином при нагревании и обработке ультразвуком и дальнейшем количественном измерении оптической плотности полученного раствора угля в видимой области спектра поглощения. Экстракцию угольной пыли из пылевого микста атмосферного воздуха проводят хинолином при нагревании до 250-280°C и обработке ультразвуком с частотой 30-65 кГц в течение 10-15 минут. Получают две фазы: угольную пыль в растворе, неорганическую пыль - нерастворимый осадок. Угольную пыль в растворе хинолина определяют спектрофотометрически при аналитической длине волны поглощения раствора угля 622 нм, содержание угля определяют по предварительно построенной градуировочной характеристике - зависимости C=f(D), где C - концентрация определяемого вещества (мкг/мл); D - оптическая плотность исследуемого раствора. Достигается возможность солюбилизации твердых органических материалов с образованием одного солюбилизированного органического растворимого вещества. В солюбилизированное органическое растворимое вещество превращается свыше 95% твердого органического материала. 1 пр.

Формула изобретения RU 2 626 602 C1

Способ количественного определения угольной пыли в атмосферном воздухе в присутствии других видов пыли спектрофотометрическим методом, отличающийся тем, что экстракцию угольной пыли из пылевого микста атмосферного воздуха проводят хинолином при нагревании до 250-280°C и обработке ультразвуком с частотой 30-65 кГц в течение 10-15 минут, при этом получают две фазы: угольную пыль в растворе, неорганическую пыль - нерастворимый осадок; угольную пыль в растворе хинолина определяют спектрофотометрически при аналитической длине волны поглощения раствора угля 622 нм, содержание угля определяют по предварительно построенной градуировочной характеристике - зависимости C=f(D), где С - концентрация определяемого вещества (мкг/мл); D - оптическая плотность исследуемого раствора.

Документы, цитированные в отчете о поиске Патент 2017 года RU2626602C1

Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Измерение массовых концентраций алюминия и диалюминия триоксида (оксида алюминия) в пыли взрывчатых веществ воздуха рабочей зоны методом фотометрии
Солесос 1922
  • Макаров Ю.А.
SU29A1
см
разд
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
Способ автоматического контроля концентрации пыли в шахтной атмосфере 1988
  • Онищенко Александр Михайлович
  • Белоножко Виктор Петрович
  • Июдин Сергей Александрович
SU1550368A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА УГОЛЬНОЙ ПЫЛИ В ГАЗЕ-НОСИТЕЛЕ 0
SU295063A1
СПОСОБ АВТОМАТИЧЕСКОГО КОНТРОЛЯ СОДЕРЖАНИЯ ПЫЛИ В ОТРАБОТАННЫХ ГАЗАХ 1992
  • Горлов Ю.И.
  • Онищенко А.М.
RU2091770C1
CN 103969162 A, 06.08.2014
CN 103163053 A, 19.06.2013.

RU 2 626 602 C1

Авторы

Слышкина Татьяна Вадимовна

Даты

2017-07-28Публикация

2016-10-26Подача