Изобретение относится к области газового анализа, в частности к измерениям концентрации закиси азота в кислородосодержащих и инертных газовых средах, содержащих смесь из кислорода, азота и закиси азота, в частности, к измерениям содержания закиси азота в воздушной атмосфере.
Закись азота находит достаточно широкое практическое применение. В частности, она используется как средство для ингаляционного наркоза. Это соединение можно назвать самым безопасным средством для наркоза, так как после его применения не наблюдается осложнений. Также закись азота используется для улучшения технических характеристик двигателей внутреннего сгорания. Горючее, насыщенное закисью азота, впрыскивают во впускной коллектор двигателя. Это снижает температуру всасываемого в двигатель воздуха, увеличивает содержание кислорода в поступающей топливной смеси и повышает скорость сгорания в цилиндрах двигателя. Для пищевой промышленности закись азота зарегистрирована в качестве пищевой добавки E942, как пропеллент и упаковочный газ, предотвращающий порчу продукта. Закись азота используется также в качестве окислителя в однокомпонентном топливе с этаном, этиленом или ацетиленом в качестве топлива.
Существует относительно немного способов определения закиси азота в газовых средах. Так, например, известен способ дистанционного контроля содержания закиси азота в газовой среде (BY 6757, опубл. 30.03.2005) [1]. Данный способ включает облучение газовой среды импульсным лазерным излучением молекулярного газового лазера мощностью 1 МВт в спектральном диапазоне 4,51-4,54 мкм на двух частотах, одна из которых не совпадает с линией поглощения закиси азота, а другая не совпадает, причем длины волн, соответствующие этим двум частотам, отличаются на значение 0,01мкм.
Концентрацию закиси азота в этом способе определяют по отношению интенсивностей прошедшего через среду или рассеянного назад излучения на указанных частотах. Этот способ непосредственно предназначен для определения малых, т.е. фоновых концентраций закиси азота, как одного из газов–разрушителей защитного озонового слоя земной атмосферы и касается больше качественного, нежели количественного анализа, что возможно оправдывает его аппаратурную сложность.
Наиболее применимыми для определения концентрации закиси азота в газовых средах являются газохроматографические способы. Известен газохроматографический способ определения концентрации закиси азота в газах (RU 2226688, опубл.10.04.2004) [2]. В соответствии с этим способом анализируемую смесь разделяют на закись азота и сопутствующие газы в потоке газа-носителя на хроматографической колонке, заполненной сорбентом, в качестве которого используют цеолит СаХ с содержанием влаги 13–17 мас.%, модифицированным полиэтиленгликолем–1000, взятым в количестве 0,5–1,0% от массы цеолита. Этим способом достигается селективность и высокая чувствительность определения закиси азота – 2 мг/м3, что соответствует 0,5 ПДК.
Как следует из описания RU 2226688, для реализации данного способа необходим специализированный цеолит, для получения которого исходный цеолит СаХ дробят, отбирают нужную фракцию, нагревают до температуры 100°С в муфельной печи и выдерживают под вакуумом в течение 1,5 ч, после чего охлаждают до комнатной температуры с напуском гелия в закрытую колбу, в которой проводили термообработку. Полиэтиленгликоль–1000, взятый в количестве 0,5–1,0% от массы цеолита, растворяют в хлороформе, этим раствором заливают охлажденный цеолит СаХ с содержанием влаги 13–17 мас.% и испаряют растворитель в вытяжном шкафу на водяной бане, затем сушат в сушильном шкафу при температуре 100°С до постоянного веса. Таким образом, данный способ требует изготовления специализированного продукта, а потому сложен, трудоемок и требует квалифицированного обслуживания.
Задача настоящего изобретения заключается в создании способа, позволяющего достаточно просто и надежно измерять содержание закиси азота в газовых смесях и, в частности, в воздушной атмосфере.
Для решения поставленной задачи предложен амперометрический способ измерения концентрации закиси азота в газовых смесях, заключающийся в том, что электрохимическую ячейку с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3, на противоположных поверхностях одного из которых расположены электроды, помещают в поток анализируемой газовой смеси, на электроды подают напряжение постоянного тока в пределах от 1 до 2 В, с подключением положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, посредством чего осуществляют откачку свободного кислорода и кислорода, полученного после разложения закиси азота из полости ячейки, в поток анализируемой газовой смеси при рабочей температуре ячейки, и при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки станет равным количеству кислорода, поступающего в нее, измеряют протекающий через ячейку предельный ток, по величине изменения предельного тока от количества кислорода, откачанного из полости электрохимической ячейки, определяют концентрацию закиси азота в анализируемой газовой смеси.
Таким образом, в предложенном способе, концентрацию закиси азота в анализируемой газовой смеси определяют по величине изменения предельного тока, протекающего через ячейку, от количества кислорода, откачанного из ее полости, которое соответствует содержанию суммарного кислорода, и, что обусловлено следующим. Величина предельного тока будет зависеть от количества кислорода, образовавшегося от диссоциации закиси азота на азот и кислород при рабочей температуре анализа, и далее откачанного из полости ячейки. Когда на электроды, расположенные на противоположных поверхностях одного из дисков электрохимической ячейки с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3, помещенной в поток анализируемой газовой смеси, подают напряжение постоянного тока в пределах от 1 до 2В с подачей положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, при рабочей температуре анализа выше 400оС начинается разложение закиси азота, находящейся в анализируемой газовой смеси в соответствии с уравнением (1)
N2O = 1/2O2 + N2. (1)
При температуре 800оС происходит полное разложение закиси азота на азот и кислород. При подаче напряжения постоянного тока на первый диск происходит откачка кислорода из газовой смеси, находящейся в полости ячейки, в поток анализируемой газовой смеси, омывающей ячейку. По мере увеличения подаваемого на электроды напряжения, ток будет расти, пока не достигнет стабильного значения – предельного тока ячейки. Достижение предельного тока говорит о том, что количество кислорода, откачиваемого из полости ячейки, равно количеству кислорода, поступающего в полость ячейки через капилляр. По величине предельного тока, соответствующего количеству откачанного из полости ячейки кислорода, определяют концентрацию кислорода в анализируемой газовой смеси в соответствии с уравнением (2) (Иванов-Шиц, И.Мурин, Ионика твердого тела, том 2, С.-Петербург (2010) СС. 964-965) [3]:
IL(О2) = -
где D(О2) – коэффициент диффузии кислорода в азоте (если анализируемая газовая смесь состоит из O2 + N2 +N2O);
X (O2) – мольная доля кислорода в азоте;
S – площадь сечения капилляра, мм2;
P – общее давление газовой смеси, Па;
T – температура анализа, К;
L - длина капилляра, мм.
При этом образовавшийся от разложения закиси азота кислород также откачивается из полости ячейки. Зная исходное содержание кислорода в анализируемой газовой смеси, (например, содержание кислорода в воздухе составляет 20,5% об.), по измеренной величине предельного тока можно однозначно определить количество кислорода, образовавшегося от разложения закиси азота и соответственно количество закиси азота в анализируемой газовой смеси.
Новый технический результат, достигаемый заявленным способом, заключается в возможности амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе хорошо изученного кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3.
Изобретение иллюстрируется рисунками, где на фиг. 1 изображена электрохимическая ячейка для реализации способа; на фиг. 2 – зависимость изменения предельного тока ячейки от напряжения, подаваемого на ее электроды для азота, воздуха и газовой смеси состава О2-20%, N2-50% и N2O-30%; на фиг.3 – зависимость предельного тока ячейки от напряжения, подаваемого на ее электроды для смесей N2O-20% + N2, N2O-50% + N2, N2O-80% + N2; на фиг.4 – зависимость предельного тока ячейки от концентрации кислорода в смеси О2 м N2; на фиг.5 - зависимость предельного тока от концентрации N2O в N2, на фиг.6 – зависимость предельного тока ячейки от концентрации N2O в О2.
Электрохимическая ячейка состоит из двух дисков 1 и 2, выполненных из кислородпроводящего твердого электролита (0,9 ZrO2 + 0,1Y2O3). На противоположных поверхностях диска 1 расположены два электрода 3 и 4. Диски 1 и 2 соединены между собой с образованием полости 5, между дисками находится капилляр 6. Диски 1 и 2 соединены между собой газоплотным герметиком 7. Подачу напряжения на электроды 3 и 4 осуществляют от источника напряжения постоянного тока, причем на внутренний электрод 4 подают минус. Электрохимическую ячейку помещают в поток анализируемой газовой смеси, который омывает ее наружную поверхность и по капилляру 6 поступает в полость 5. Под действием напряжения постоянного тока (ИПТ), через твердый кислородопроводящий электролит происходит откачка кислорода из газовой смеси, находящейся в полости ячейки, в поток анализируемой газовой смеси. При установившемся режиме предельного тока ячейки, количество кислорода, поступившего в полость ячейки, и количество кислорода, откачанного из нее, уравновешиваются. При этом закись азота при рабочей температуре ячейки диссоциирует с образованием кислорода, который также откачивается из полости ячейки. Таким образом, из полости ячейки откачивается как находившийся в газовой смеси свободный кислород, так и кислород, образовавшийся от разложения закиси азота. При этом капилляр 6 является диффузионным барьером, лимитирующим этот газовый поток обмена. Этому потоку обмена будет соответствовать и ток ячейки. При приложении напряжения от 1 до 2В, газообмен между полостью ячейки и анализируемой средой стабилизируется и в цепи устанавливается предельный диффузионный ток - IL(О2), который измеряют с помощью амперметра (А). Посредством уравнения (2) по величине измеренного IL(О2) можно определить величину Х (О2), т.е. суммарную концентрацию кислорода в анализируемой газовой смеси. Зная концентрацию свободного кислорода в газовой смеси и вычтя ее из измеренного значения суммарного кислорода можно определить содержание закиси азота в анализируемой газовой смеси.
При приготовлении газовых смесей состава О2+N2О, N2О+N2 или О2+ N2 +N2O из отдельных компонентов контроль содержания в них закиси азота можно выполнить по измеренному значению суммарного кислорода ХО2 в соответствии с уравнениями (3-5). Так, для газовой смеси, содержащей кислород и закись азота, суммарное количество кислорода после полного разложения закиси азота будет составлять
XO2 =
для смеси, содержащей кроме кислорода, закиси азота еще и азот, суммарное количество кислорода будет
XO2 =
а для смеси состава азот и закись азота содержание кислорода будет определяться уравнением
ХО2 =
Графики, представленные на фиг. 2–6 для рабочей температуры ячейки 800оС, также иллюстрируют возможности заявленного способа. Так, на фиг. 2 представлена зависимость предельного тока ячейки для смеси воздуха, закиси азота и тройной смеси из кислорода, закиси азота и азота. Этот график позволяет судить о значениях предельных токов для каждой из рассматриваемых газовых смесей. График, изображенный на фиг. 3, представляет изменения тока ячейки от напряжения, подаваемого на ее электроды, и от концентрации N2O в N2. На основании данных графика (фиг. 3) построен график (фиг. 4), который позволяет определять содержание N2O по величине предельного тока. Аналогично графику фиг. 4 получена зависимость изменения предельного тока ячейки от концентрации закиси азота для смеси закиси азота в кислороде (фиг. 5). Полученные линейные зависимости предельных токов ячейки от концентрации закиси азота в смеси с азотом (фиг.5) и кислородом (фиг.6) позволяет оперативно и просто определять содержание закиси азота в газовых смесях.
Таким образом, заявленный способ позволяет просто и надежно измерять концентрацию закиси азота в газовой смеси посредством амперометрической ячейки с хорошо изученным кислородопроводящим твердым электролитом. Посредством уравнения (2) по величине измеренного IL(О2) можно определить величину Х (О2), т.е. суммарную концентрацию кислорода в анализируемой газовой смеси, а по ней рассчитывать содержание закиси азота.
название | год | авторы | номер документа |
---|---|---|---|
Амперометрический способ измерения концентрации оксида азота в воздухе | 2020 |
|
RU2750138C1 |
Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси | 2020 |
|
RU2735628C1 |
Амперометрический способ измерения концентрации оксида азота в газовой смеси с азотом | 2020 |
|
RU2752801C1 |
Способ определения содержания компонентов в высокотемпературных газовых средах | 2024 |
|
RU2821167C1 |
Амперометрический способ измерения содержания монооксида углерода в инертных газах | 2021 |
|
RU2755639C1 |
Способ определения концентрации монооксида и диоксида углерода в анализируемой газовой смеси с азотом | 2021 |
|
RU2779253C1 |
Способ определения ионного числа переноса твердых электролитов с протонной проводимостью | 2020 |
|
RU2750136C1 |
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ АММИАКА В АЗОТЕ | 2015 |
|
RU2583162C1 |
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МЕТАНА В АЗОТЕ | 2015 |
|
RU2613328C1 |
Сенсор для измерения концентрации кислорода в газовой смеси | 2023 |
|
RU2795670C1 |
Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3. Способ заключается в том, что электрохимическую ячейку с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2+0,1Y2O3, на противоположных поверхностях одного из которых расположены электроды, помещают в поток анализируемой газовой смеси, на электроды подают напряжение постоянного тока в пределах от 1 до 2 В с подключением положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, посредством чего осуществляют откачку свободного кислорода и кислорода, полученного после разложения закиси азота из полости ячейки, в поток анализируемой газовой смеси при рабочей температуре ячейки, и при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки, станет равным количеству кислорода, поступающего в нее, измеряют протекающий через ячейку предельный ток, по величине изменения предельного тока от количества кислорода, откачанного из полости электрохимической ячейки, определяют концентрацию закиси азота в анализируемой газовой смеси. 6 ил.
Амперометрический способ измерения концентрации закиси азота в газовых смесях, заключающийся в том, что электрохимическую ячейку с полостью, образованной двумя дисками из кислородопроводящего твердого электролита состава 0,9 ZrO2 + 0,1Y2O3, на противоположных поверхностях одного из которых расположены электроды, помещают в поток анализируемой газовой смеси, на электроды подают напряжение постоянного тока в пределах от 1 до 2 В с подключением положительного полюса на электрод, находящийся на внешней стороне диска, а отрицательного полюса – на внутренней, посредством чего осуществляют откачку свободного кислорода и кислорода, полученного после разложения закиси азота из полости ячейки, в поток анализируемой газовой смеси при рабочей температуре ячейки, и при достижении стационарного состояния, когда количество кислорода, откачанного из полости ячейки, станет равным количеству кислорода, поступающего в нее, измеряют протекающий через ячейку предельный ток, по величине изменения предельного тока от количества кислорода, откачанного из полости электрохимической ячейки, определяют концентрацию закиси азота в анализируемой газовой смеси.
Сверлильный станок | 1926 |
|
SU6757A1 |
СПОСОБ ГАЗОХРОМАТОГРАФИЧЕСКОГО ОПРЕДЕЛЕНИЯ ЗАКИСИ АЗОТА В ГАЗАХ | 2003 |
|
RU2226688C1 |
US 6303018 B1, 16.10.2001 | |||
CN 103837579 A, 04.06.2014. |
Авторы
Даты
2017-08-03—Публикация
2016-11-03—Подача