Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания аммиака в азоте. Изобретение может быть использовано для решения технологических задач и задач экологического контроля.
Известен способ определения концентрации аммиака (RU 2068560, опубл. 27.10.1996) [1]. Способ заключается в переводе аммиака в аэрозоль путем пропускания в течение не более 85 ч анализируемого воздуха над реагентом - кристаллогидратом азотнокислого железа. Перед пропусканием анализируемого воздуха реагент выдерживают до постоянной массы над раствором азотной кислоты концентрации 55-65 мас. %. Полученный аэрозоль направляют в электроиндукционный пылемер и регистрируют концентрацию аэрозоля в единицах концентрации аммиака. Способ характеризуется трудоемкостью, необходимостью использования расходных реагентов, длительностью анализа.
Наибольшее распространение для измерения содержания аммиака получили способы с использованием покрытий, нанесенных на диэлектрик, которые адсорбируют аммиак из газа носителя. Так, известен датчик для определения аммиака (RU 2478942, опубл 10.05.2012) [2]. В результате адсорбции происходит изменение сопротивления этого покрытия и по величине изменения тока в цепи судят о концентрации аммиака в анализируемом газе. Данный способ измерения характеризуется плохой воспроизводимостью, т.к. нанесение покрытий с одинаковыми характеристиками по крупности, толщине, составу покрытия практически невозможно. Кроме того, с течением времени будет происходить пассивация покрытия, что изменит характеристики датчика.
Известен способ измерения аммиака, в котором на подложку, являющуюся электродной площадкой пьезокварцевого резонатора, наносят поликристаллическую пленку селенида цинка, легированного селенидом кадмия. Этот способ реализован в газовом датчике (RU 2464552, опубл 22.04.2011) [3] и полупроводниковом газоанализаторе (RU 2464553, опубл. 10.05.2012) [4]. В зависимости от содержания аммиака в омывающем пленку газе, наблюдается изменение частоты колебаний пьезокварцевого резонатора. Данный способ измерения аммиака имеет те же недостатки, что и вышеописанные способы.
Наиболее близким к заявляемому изобретению является способ определения концентрации аммиака и его производных в газовой среде (RU 2473893, опубл. 27.01.2013) [5]. Для реализации способа используют сенсор, обладающий повышенной чувствительностью к диоксиду азота и к аммиаку, а также конвертер, в качестве которого может быть использована, например, подогреваемая трубка, наполненная катализатором или соединенная с нагревательным элементом диэлектрическая пластинка с нанесенным на нее слоем катализатора, способного превращать аммиак в оксиды азота, то есть каталитически окислять аммиак или его производные:
Конвертер может работать в стационарном режиме, то есть непрерывно находиться при температуре, обеспечивающей каталитическое превращение, или в нестационарном режиме, при котором температура конвертера, обеспечивающая каталитическое превращение, сменяется температурой, при которой каталитическое превращение не протекает.
Сенсор и конвертер помещают в камеру, имеющую отверстие для попадания в камеру исследуемой газовой среды. Оксиды азота, в отличие от аммиака, не уменьшают, а увеличивают сопротивление полупроводника n-типа в результате хемосорбции (акцепторный сигнал). После того, как аммиак и его производные превращаются в оксиды азота с помощью конвертера, измеряют электрическое сопротивление полупроводникового сенсора и по величине этого сопротивления определяют концентрацию аммиака в газовой среде. Способ обеспечивает высокую селективность и стабильность измерений.
С помощью данного способа можно измерять содержание аммиака и его производных в воздушной или другой окислительной среде. В среде инертного газа, например азота, где свободный окислитель отсутствует, измерение концентрации аммиака описанным способом невозможно.
Задача настоящего изобретения заключается в создании способа, позволяющего достаточно просто и надежно измерять содержание аммиака в азоте.
Для решения поставленной задачи предложен амперометрический способ измерения концентрации аммиака в азоте, заключающийся в том, что концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от количества аммиака, окисленного на поверхности внутренних электродов электрохимической ячейки, выполненных из электродного материала, при этом в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам дисков подают напряжение постоянного тока в пределах 400-500 мВ с подачей положительного полюса на внутренние электроды, посредством которого осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружные электроды - твердые электролиты - внутренние электроды, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления аммиака из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в нее, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление аммиака, определяют концентрацию аммиака в азоте. В качестве каталитического материала используют платину.
Подача на электроды напряжения постоянного тока в пределах 400-500 мВ с подачей положительного полюса на электроды, находящиеся внутри ячейки, обеспечивает накачку кислорода, полученного в результате диссоциации присутствующей в газовой смеси влаги, из анализируемого газового потока в полость ячейки. В полости ячейки накачанный кислород взаимодействует с аммиаком, поступившим туда в смеси с азотом из анализируемой среды. При этом на поверхности внутренних электродов ячейки, выполненных из электродного материала, будет интенсивно идти процесс взаимодействия аммиака с кислородом в соответствии с реакциями (1, 2). При достижении напряжения постоянного тока величины 400-500 мВ ток стабилизируется и перестает расти с ростом напряжения. Полученный ток является предельным током, а его величина обусловлена газообменом между анализируемой средой и газом в полости ячейки. Величина предельного тока сенсора лимитируется диффузионным барьером - капилляром сенсора и связана с концентрацией аммиака (Иванов-Шиц, И.Мурин, Ионика твердого тела, том 2, С.-Петербург (2010). С. 964-965 уравнением (3):
где:
D(аммиак-инертный газ) - коэффициент диффузии аммиака в инертном газе, см2/с;
X(аммиак) - мольная доля аммиака в инертном газе;
S - площадь сечения капилляра, мм2;
Р - общее давление газовой смеси, атм;
Т - температура анализа, К;
L - длина капилляра, мм.
В соответствии с уравнением (3) достаточно легко рассчитать содержание аммиака по измеренному значению предельного тока IL(аммиак - инертный газ).
Новый технический результат, достигаемый заявленным способом, заключается в получении возможности измерения аммиака в смеси с инертным газом и упрощении измерительного устройства путем изготовления его из простого и хорошо изученного кислородпроводящего твердого электролита.
Изобретение иллюстрируется рисунками, где на фиг. 1 изображена электрохимическая ячейка для реализации способа; на фиг. 2 - вольт-амперная характеристика при анализе аммиака в смеси аммиак + азот при 500°C; на фиг. 3 - концентрационная зависимость величины предельного тока от концентрации аммиака в смеси с азотом. Электрохимическая ячейка для реализации способа измерения аммиака состоит из двух дисков 1, выполненных из кислородпроводящего твердого электролита состава 0,9ZrO2 + 0,1Y2O3. На противоположных поверхностях каждого из дисков 1 расположены по два наружных электрода 2 и по два внутренних электрода 3. Диски 1 соединены между собой газоплотным герметиком 4 с образованием внутренней полости. Между дисками находится капилляр 5. Подача напряжения на электроды 2 и 3 осуществляется от источника напряжения постоянного тока (ИПТ). Ток, возникающий в цепи ячейки, измеряется амперметром (А). Электрохимическая ячейка помещена в поток анализируемого газа, который омывает ее наружную поверхность и по капилляру 5 поступает во внутреннюю полость ячейки. Под действием напряжения постоянного тока, приложенного от источника (ИПТ) к электродам 2 и 3, причем на внутренние электроды 3 приложен плюс, через твердый кислородпроводящий электролит происходит накачка кислорода из анализируемого газа во внутреннюю полость ячейки. В полости поступивший кислород взаимодействует на поверхности каталитических электродов 3 с аммиаком. Образовавшиеся продукты взаимодействия, в соответствии с уравнениями (1-2), обмениваются через капилляр 5 с анализируемым газом. При этом капилляр 5 является диффузионным барьером, лимитирующим этот газовый поток обмена. Этому потоку обмена будет соответствовать и ток ячейки. При достижении приложенного напряжения величины в пределах 400-500 мВ, газообмен между полостью ячейки и анализируемой средой стабилизируется и в цепи устанавливается предельный диффузионный ток - IL(аммиак - азот), который измеряют с помощью амперметра (А). Посредством уравнения (3) по величине измеренного IL(аммиак - азот) можно определить величину X(аммиак), т.е. концентрацию аммиака в азоте.
Таким образом, заявленный способ позволяет измерить содержание аммиака в смеси с азотом или другим инертным газом посредством амперометрической ячейки с кислородпроводящим твердым электролитом.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ МЕТАНА В АЗОТЕ | 2015 |
|
RU2613328C1 |
АМПЕРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ | 2014 |
|
RU2563325C1 |
Амперометрический способ измерения концентрации кислорода в газовых смесях | 2017 |
|
RU2654389C1 |
Амперометрический способ измерения содержания монооксида углерода в инертных газах | 2021 |
|
RU2755639C1 |
СПОСОБ ИЗМЕРЕНИЯ КИСЛОРОДОСОДЕРЖАНИЯ И ВЛАЖНОСТИ ГАЗА | 2013 |
|
RU2540450C1 |
Способ определения ионного числа переноса твердых электролитов с протонной проводимостью | 2020 |
|
RU2750136C1 |
Способ определения концентрации монооксида и диоксида углерода в анализируемой газовой смеси с азотом | 2021 |
|
RU2779253C1 |
Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси | 2020 |
|
RU2735628C1 |
ТВЕРДОЭЛЕКТРОЛИТНЫЙ ДАТЧИК ДЛЯ АМПЕРОМЕТРИЧЕСКОГО ИЗМЕРЕНИЯ КОНЦЕНТРАЦИИ ВОДОРОДА И КИСЛОРОДА В ГАЗОВЫХ СМЕСЯХ | 2011 |
|
RU2483298C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ГОРЮЧИХ ГАЗОВ В АЗОТЕ | 2014 |
|
RU2548614C1 |
Изобретение относится к области газового анализа и может быть использовано для решения технологических задач и задач экологического контроля. Концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от количества аммиака, окисленного на поверхности внутренних электродов электрохимической ячейки, выполненных из электродного материала. Для этого в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам дисков подают напряжение постоянного тока в пределах 400-500 мВ с подачей положительного полюса на внутренние электроды, посредством которого осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружные электроды - твердые электролиты - внутренние электроды, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления аммиака из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в нее, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление аммиака, определяют концентрацию аммиака в азоте. Изобретение обеспечивает возможность просто и надежно измерять содержание аммиака в азоте. 1 з.п. ф-лы, 3 ил.
1. Амперометрический способ измерения концентрации аммиака в азоте, заключающийся в том, что концентрацию аммиака в анализируемом газе определяют по зависимости изменения величины одной из электрических характеристик электрохимической ячейки от количества аммиака, окисленного на поверхности внутренних электродов электрохимической ячейки, выполненных из электродного материала, отличающийся тем, что в поток анализируемого газа помещают электрохимическую ячейку с полостью, образованной двумя дисками из кислородпроводящего твердого электролита, на противоположных поверхностях дисков расположены по паре электродов, к электродам дисков подают напряжение постоянного тока в пределах 400-500 мВ с подачей положительного полюса на внутренние электроды, посредством которого осуществляют электролиз паров воды, находящихся в анализируемом газе, и накачку полученного в результате электролиза кислорода из потока анализируемого газа в полость ячейки по электрохимической цепи: наружные электроды - твердые электролиты - внутренние электроды, в процессе достижения стационарного состояния, когда диффузионный поток продуктов окисления аммиака из полости ячейки станет равным поступающему потоку анализируемого газа, поступающего в нее, измеряют протекающий через ячейку предельный ток и по величине предельного тока, соответствующего содержанию кислорода, потраченного на окисление аммиака, определяют концентрацию аммиака в азоте.
2. Способ по п. 1, отличающийся тем, что в качестве электродного материала используют платину.
СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ АММИАКА В ВОЗДУХЕ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ | 2006 |
|
RU2315986C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОКОНЦЕНТРАЦИЙ ПАРОВ АММИАКА В ВОЗДУХЕ | 2007 |
|
RU2319958C1 |
Вулканизационный котел для починки автопокрышек и автокамер | 1930 |
|
SU25267A1 |
Способ определения концентрации аммиака | 1989 |
|
SU1702278A1 |
JP2011013057A, 20.01.2011 | |||
JP2010048596A, 04.03.2010 | |||
JP2006023234A, 26.01.2006 | |||
Барокамера | 1988 |
|
SU1600768A1 |
Устройство для питания сварочной дуги током | 1961 |
|
SU148466A1 |
Авторы
Даты
2016-05-10—Публикация
2015-03-05—Подача